betway必威登陆网址 (betway.com )学报››2022,Vol. 43››Issue (4): 241-247.DOI:10.3969/j.issn.2097-0005.2022.04.001
• 基础研究 •下一篇
谢云博1(), 刘伯言2, 陈军1, 张驰1, 赵敏2, 秦树存2(
), 王义围1(
)
收稿日期:
2021-12-26出版日期:
2022-04-25发布日期:
2022-05-07通讯作者:
秦树存,王义围作者简介:
谢云博,硕士,E-mail:xieyunbo66@163.com。基金资助:
Yunbo XIE1(), Boyan LIU2, Jun Chen1, Chi ZHANG1, min ZHAO2, Shuncun QIN2(
), Yiwei WANG1(
)
Received:
2021-12-26Online:
2022-04-25Published:
2022-05-07Contact:
Shuncun QIN,Yiwei WANG摘要:
H2吸入对脂质代谢有一定的调节作用,但对磷脂、鞘脂分子的具体影响尚无研究。本研究通过靶向脂质组学方法检测了66.7%的H2吸入干预后高脂饮食大鼠血浆及肝脏中的磷脂、鞘脂分子的变化,为研究H2改善脂代谢的机制研究提供依据。
选取雄性SD大鼠分为对照组、高脂饮食模型组,高脂饮食 + 66.7% H2干预组。干预10周后,对血浆和肝脏中的不同种类的磷脂和鞘脂进行分析。
主成分分析及聚类热图表明高脂饮食模型组与对照组之间的磷脂、鞘脂谱存在明显差异,在血浆中检测出差异磷脂分子17种,差异鞘脂分子16种;在肝脏中检测出差异磷脂分子50种,鞘脂分子18种。66.7% H2干预后对血浆的磷脂和鞘脂均有影响,共计5种磷脂酰胆碱、2种溶血磷脂酰乙醇胺、1种鞘磷脂分子含量降低,差异有统计学意义(P< 0.05);66.7% H2干预后对肝脏磷脂影响较大,共12种磷脂酰胆碱、6种磷脂酰乙醇胺、3种溶血磷脂酰胆碱、4种溶血磷脂酰乙醇胺分子含量降低,差异有统计学意义(P< 0.05),而对神经酰胺、鞘磷脂等鞘脂无显著影响。
66.7%的H2吸入可影响高脂饮食大鼠磷脂、鞘脂代谢,降低血浆及肝脏中多种磷脂的含量,改善高脂饮食导致的血浆、肝脏中多种磷脂、鞘脂分子水平的异常。H2可作为一种改善脂质代谢的有效辅助手段。H2改善脂质代谢的分子机制值得进一步研究。
谢云博, 刘伯言, 陈军, 张驰, 赵敏, 秦树存, 王义围. 吸入高浓度H2对高脂饮食大鼠血浆和肝脏中磷脂和鞘脂分子的影响[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(4): 241-247.
Yunbo XIE, Boyan LIU, Jun Chen, Chi ZHANG, min ZHAO, Shuncun QIN, Yiwei WANG. Effects of high concentration of H2inhalation on phospholipids and sphingolipids in plasma and liver of high-fat diet rats[J]. Journal of Shandong First Medical Unversity & Shandong Academy of Medical Sciences, 2022, 43(4): 241-247.
Compounds | Q1(Parent ion) | Q3(Product ion)a | DP(V) | CE(V) |
---|---|---|---|---|
PC | [M + H]+ | PI 184.1 | 100 | 40 |
PE | [M + H]+ | NL 141 | 100 | 30 |
LPC | [M + H]+ | PI 184.1 | 110 | 40 |
LPE | [M + H]+ | NL 141 | 100 | 25 |
Cer | [M + H]+ | PI 264.3 | 80 | 40 |
SM | [M + H]+ | PI 184.1 | 110 | 40 |
表1脂质质谱定量检测条件
Compounds | Q1(Parent ion) | Q3(Product ion)a | DP(V) | CE(V) |
---|---|---|---|---|
PC | [M + H]+ | PI 184.1 | 100 | 40 |
PE | [M + H]+ | NL 141 | 100 | 30 |
LPC | [M + H]+ | PI 184.1 | 110 | 40 |
LPE | [M + H]+ | NL 141 | 100 | 25 |
Cer | [M + H]+ | PI 264.3 | 80 | 40 |
SM | [M + H]+ | PI 184.1 | 110 | 40 |
脂质分子 | relative contents (ratio to IS) | ||
---|---|---|---|
Con | HFD | HFD+H2 | |
PC 16∶0/18∶0 | 0.099 ± 0.017 | 0.124 ± 0.052 | 0.086 ± 0.026# |
PC 16∶1/18∶1 | 0.026 ± 0.007 | 0.052 ± 0.008*** | 0.039 ± 0.011# |
PC 18∶2/18∶2 | 0.394 ± 0.083 | 0.306 ± 0.082* | 0.216 ± 0.075# |
PC 18∶1/18∶2 | 0.538 ± 0.158 | 0.524 ± 0.136 | 0.393 ± 0.109# |
PC 18∶1/18∶1 | 0.149 ± 0.035 | 0.284 ± 0.087*** | 0.196 ± 0.051## |
LPE 18∶1 | 0.326 ± 0.068 | 0.457 ± 0.190* | 0.291 ± 0.079## |
LPE 20∶4 | 0.095 ± 0.030 | 0.114 ± 0.035 | 0.077 ± 0.200## |
SM d18∶1/18∶2 | 0.489 ± 0.115 | 0.205 ± 0.250*** | 0.157 ± 0.024### |
表2H2干预对血浆脂质分子的影响
脂质分子 | relative contents (ratio to IS) | ||
---|---|---|---|
Con | HFD | HFD+H2 | |
PC 16∶0/18∶0 | 0.099 ± 0.017 | 0.124 ± 0.052 | 0.086 ± 0.026# |
PC 16∶1/18∶1 | 0.026 ± 0.007 | 0.052 ± 0.008*** | 0.039 ± 0.011# |
PC 18∶2/18∶2 | 0.394 ± 0.083 | 0.306 ± 0.082* | 0.216 ± 0.075# |
PC 18∶1/18∶2 | 0.538 ± 0.158 | 0.524 ± 0.136 | 0.393 ± 0.109# |
PC 18∶1/18∶1 | 0.149 ± 0.035 | 0.284 ± 0.087*** | 0.196 ± 0.051## |
LPE 18∶1 | 0.326 ± 0.068 | 0.457 ± 0.190* | 0.291 ± 0.079## |
LPE 20∶4 | 0.095 ± 0.030 | 0.114 ± 0.035 | 0.077 ± 0.200## |
SM d18∶1/18∶2 | 0.489 ± 0.115 | 0.205 ± 0.250*** | 0.157 ± 0.024### |
脂质分子 | relative contents (ratio to IS/mg protein) | ||
---|---|---|---|
Con | HFD | HFD+H2 | |
PC 16∶0/18∶2 | 8.551 ± 2.077 | 25.60 ± 7.130*** | 16.61 ± 5.260## |
PC 16∶0/18∶0 | 0.681 ± 50.179 | 1.95 ± 0.607*** | 1.40 ± 0.410# |
PC 18∶0/18∶0 | 0.246 ± 0.046 | 0.79 ± 0.190*** | 0.55 ± 0.200# |
PC 16∶0/20∶2 | 0.019 ± 0.005 | 0.058 ± 0.015*** | 0.042 ± 0.014# |
PC 16∶1/18∶1 | 0.0218 ± 0.009 | 0.196 ± 0.078*** | 0.102 ± 0.044## |
PC 16∶0/18∶1 | 1.066 ± 0.244 | 6.295 ± 1.640*** | 3.921 ± 1.140## |
PC 16∶0/20∶5 | 0.040 ± 0.010 | 0.123 ± 0.056** | 0.072 ± 0.028# |
PC 16∶0/20∶4 | 4.396 ± 0.983 | 11.050 ± 2.529*** | 8.060 ± 2.598# |
PC 18∶1/18∶1 | 0.121 ± 0.040 | 0.789 ± 0.214*** | 0.470 ± 0.163## |
PC 18∶0/18∶1 | 0.792 ± 0.232 | 3.767 ± 1.540*** | 2.713 ± 0.644# |
PC 16∶0/22∶6 | 0.174 ± 0.499 | 0.310 ± 0.055*** | 0.231 ± 0.0796# |
PC 18∶1/20∶4 | 0.283 ± 0.099 | 0.850 ± 0.238*** | 0.5782 ± 0.186# |
PE 18∶0/18∶2 | 9.716 ± 3.464 | 21.732 ± 7.483** | 14.642 ± 2.682# |
PE 18∶2/22∶5 | 0.067 ± 0.024 | 0.183 ± 0.062*** | 0.121 ± 0.036# |
PE 18∶0/22∶5 | 1.500 ± 0.470 | 4.067 ± 0.899*** | 3.167 ± 0.770# |
PE 18∶0/22∶4 | 0.542 ± 0.131 | 1.323 ± 0.426*** | 0.869 ± 0.207## |
PE 20∶0/20∶4 | 0.192 ± 0.056 | 0.451 ± 0.112*** | 0.360 ± 0.077# |
PE 18∶0/20∶6 | 6.755 ± 1.954 | 17.610 ± 3.081*** | 13.279 ± 3.866# |
LPC 18∶0 | 16.320 ± 4.198 | 50.110 ± 11.720*** | 36.271 ± 9.397## |
LPC 20∶1 | 1.695 ± 4.499 | 0.332 ± 0.097 | 0.202 ± 0.077## |
LPC 22∶6 | 0.157 ± 0.076 | 0.211 ± 0.066 | 0.159 ± 0.026# |
LPE 16∶0 | 2.522 ± 1.228 | 8.501 ± 3.287*** | 6.089 ± 1.109# |
LPE 18∶0 | 6.639 ± 1.916 | 23.375 ± 6.631*** | 14.150 ± 3.061### |
LPE 18∶1 | 0.716 ± 0.237 | 2.903 ± 1.204*** | 1.792 ± 0.483## |
LPE 20∶1 | 0.019 ± 0.008 | 0.060 ± 0.018*** | 0.035 ± 0.009### |
表3H2干预对肝脏脂质分子的影响
脂质分子 | relative contents (ratio to IS/mg protein) | ||
---|---|---|---|
Con | HFD | HFD+H2 | |
PC 16∶0/18∶2 | 8.551 ± 2.077 | 25.60 ± 7.130*** | 16.61 ± 5.260## |
PC 16∶0/18∶0 | 0.681 ± 50.179 | 1.95 ± 0.607*** | 1.40 ± 0.410# |
PC 18∶0/18∶0 | 0.246 ± 0.046 | 0.79 ± 0.190*** | 0.55 ± 0.200# |
PC 16∶0/20∶2 | 0.019 ± 0.005 | 0.058 ± 0.015*** | 0.042 ± 0.014# |
PC 16∶1/18∶1 | 0.0218 ± 0.009 | 0.196 ± 0.078*** | 0.102 ± 0.044## |
PC 16∶0/18∶1 | 1.066 ± 0.244 | 6.295 ± 1.640*** | 3.921 ± 1.140## |
PC 16∶0/20∶5 | 0.040 ± 0.010 | 0.123 ± 0.056** | 0.072 ± 0.028# |
PC 16∶0/20∶4 | 4.396 ± 0.983 | 11.050 ± 2.529*** | 8.060 ± 2.598# |
PC 18∶1/18∶1 | 0.121 ± 0.040 | 0.789 ± 0.214*** | 0.470 ± 0.163## |
PC 18∶0/18∶1 | 0.792 ± 0.232 | 3.767 ± 1.540*** | 2.713 ± 0.644# |
PC 16∶0/22∶6 | 0.174 ± 0.499 | 0.310 ± 0.055*** | 0.231 ± 0.0796# |
PC 18∶1/20∶4 | 0.283 ± 0.099 | 0.850 ± 0.238*** | 0.5782 ± 0.186# |
PE 18∶0/18∶2 | 9.716 ± 3.464 | 21.732 ± 7.483** | 14.642 ± 2.682# |
PE 18∶2/22∶5 | 0.067 ± 0.024 | 0.183 ± 0.062*** | 0.121 ± 0.036# |
PE 18∶0/22∶5 | 1.500 ± 0.470 | 4.067 ± 0.899*** | 3.167 ± 0.770# |
PE 18∶0/22∶4 | 0.542 ± 0.131 | 1.323 ± 0.426*** | 0.869 ± 0.207## |
PE 20∶0/20∶4 | 0.192 ± 0.056 | 0.451 ± 0.112*** | 0.360 ± 0.077# |
PE 18∶0/20∶6 | 6.755 ± 1.954 | 17.610 ± 3.081*** | 13.279 ± 3.866# |
LPC 18∶0 | 16.320 ± 4.198 | 50.110 ± 11.720*** | 36.271 ± 9.397## |
LPC 20∶1 | 1.695 ± 4.499 | 0.332 ± 0.097 | 0.202 ± 0.077## |
LPC 22∶6 | 0.157 ± 0.076 | 0.211 ± 0.066 | 0.159 ± 0.026# |
LPE 16∶0 | 2.522 ± 1.228 | 8.501 ± 3.287*** | 6.089 ± 1.109# |
LPE 18∶0 | 6.639 ± 1.916 | 23.375 ± 6.631*** | 14.150 ± 3.061### |
LPE 18∶1 | 0.716 ± 0.237 | 2.903 ± 1.204*** | 1.792 ± 0.483## |
LPE 20∶1 | 0.019 ± 0.008 | 0.060 ± 0.018*** | 0.035 ± 0.009### |
1 | Dole M, Wilson FR, Fife WP. Hyperbaric hydrogen therapy∶ a possible treatment for cancer[J]. Science, 1975, 190(4210): 152. |
2 | Ohsawa I, Ishikawa M, Takahashi K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals[J]. Nat Med, 2007, 13(6): 688. |
3 | Sun XT, Wang YQ, Wen SY, et al. Novel controlled and targeted releasing hydrogen sulfide system exerts combinational cerebral and myocardial protection after cardiac arrest[J]. J Nanobiotechnology, 2021, 19(1): 40. |
4 | Kamimura N, Nishimaki K, Ohsawa I, et al. Molecular hydrogen improves obesity and diabetes by inducing hepatic FGF21 and stimulating energy metabolism in db/db mice[J]. Obesity(Silver Spring), 2011, 19(7): 1396. |
5 | Guan WJ, Wei CH, Chen AL, et al. Hydrogen/oxygen mixed gas inhalation improves disease severity and dyspnea in patients with Coronavirus disease 2019 in a recent multicenter, open-label clinical trial[J]. J Thorac Dis, 2020, 12(6): 3448. |
6 | Zheng ZG, Sun WZ, Hu JY, et al. Hydrogen/oxygen therapy for the treatment of an acute exacerbation of chronic obstructive pulmonary disease: results of a multicenter, randomized, double-blind, parallel-group controlled trial[J]. Respir Res, 2021, 22(1): 149. |
7 | Qin SC. LDL and HDL oxidative modification and atherosclerosis[J]. Adv Exp Med Biol, 2020, 1276: 157. [8]LiuBY, XueJL, ZhangMY, et al. Hydrogen inhalation alleviates nonalcoholic fatty liver disease in metabolic syndrome rats[J]. Mol Med Rep, 2020, 22(4): 2860. |
9 | Song GH, Li M, Sang H, et al. Hydrogen-rich water decreases serum LDL-cholesterol levels and improves HDL function in patients with potential metabolic syndrome[J]. J Lipid Res, 2013, 54(7): 1884. |
10 | 赵敏, 刘伯言, 秦树存. 氧化磷脂与动脉粥样硬化[J]. 生理学报, 2021, 73(1): 69. |
11 | 孙玉衡, 伍期专, 姚存姗, 等. 缺血性脑卒中患者血浆溶血磷脂酸水平的初步研究[J]. 中华医学杂志, 2002, 82(4): 229. |
12 | Kim M, Yoo HJ, Lee D, et al. Oxidized LDL induces procoagulant profiles by increasing lysophosphatidylcholine levels, lysophosphatidylethanolamine levels, and Lp-PLA2activity in borderline hypercholesterolemia[J]. Nutr Metab Cardiovasc Dis, 2020, 30(7): 1137. |
13 | 李俭, 鲍赫楠, 黄骊群, 等. 鞘脂在介导内质网应激反应中的作用综述[J]. 植物生理学报, 2021, 57(1): 41. |
14 | Song GH, Lin QQ, Zhao H, et al. Hydrogen activates ATP-binding cassette transporter A1-dependent efflux ex vivo and improves high-density lipoprotein function in patients with hypercholesterolemia: a double-blinded, randomized, and placebo-controlled trial[J]. J Clin Endocrinol Metab, 2015, 100(7): 2724. |
15 | 杨国防, 刘向哲, 王彦华, 等. 1,25-(OH)2-D3对脑梗死大鼠神经功能、脑组织内细胞凋亡及Wnt/β-catenin通路的调节作用[J]. 中国合理用药探索, 2019, 16(4): 1. |
16 | 孙明谦, 苗兰, 张颖, 等. 基于液质联用技术对早期高脂血症金黄地鼠肝脏鞘脂的靶向代谢组学研究[J]. 实验动物科学, 2021, 38(2): 30. |
17 | Lin YT, Shi QQ, Zhang L, et al. Hydrogen-rich water ameliorates neuropathological impairments in a mouse model of Alzheimer's disease through reducing neuroinflammation and modulating intestinal microbiota[J]. Neural Regen Res, 2022, 17(2): 409. |
18 | Wu D, Gu YJ, Zhu DQ. Cardioprotective effects of hydrogen sulfide in attenuating myocardial ischemia-reperfusion injury (Review)[J]. Mol Med Rep, 2021, 24(6): 875. |
19 | Tao GR, Song GH, Qin SC. Molecular hydrogen: current knowledge on mechanism in alleviating free radical damage and diseases[J]. Acta Biochim Biophys Sin(Shanghai), 2019, 51(12): 1189. |
20 | Wang ZH, Zheng KI, Wang XD, et al. LC-MS-based lipidomic analysis in distinguishing patients with nonalcoholic steatohepatitis from nonalcoholic fatty liver[J]. Hepatobiliary Pancreat Dis Int, 2021, 20(5): 452. |
21 | Ye GZ, Yang BC, Gao H, et al. Metabolomics insights into oleate-induced disorders of phospholipid metabolism in macrophages[J]. J Nutr, 2021, 151(3): 503. |
22 | Alewijnse AE, Peters SLM, Michel MC. Cardiovascular effects of sphingosine-1-phosphate and other sphingomyelin metabolites[J]. Br J Pharmacol, 2004, 143(6): 666. |
23 | Healey RD, Saied EM, Cong XJ, et al. Discovery and mechanism of action of small molecule inhibitors of ceramidases[J]. Angew Chem Int Ed Engl, 2022, 61(2): e202109967. |
24 | Merrill AH Jr, Jones DD. An update of the enzymology and regulation of sphingomyelin metabolism[J]. Biochim Biophys Acta, 1990, 1044(1): 1. |
25 | Qin SC. Role of hydrogen in atherosclerotic disease: from bench to bedside[J]. Curr Pharm Des, 2021, 27(5): 713. |
26 | Jin ZK, Sun Y, Yang T, et al. Nanocapsule-mediated sustained H2release in the gut ameliorates metabolic dysfunction-associated fatty liver disease[J]. Biomaterials, 2021, 276: 121030. |
[1] | 刘祥, 王红, 吴嘉惠, 耿彪, 李通, 刘志超.氢气辅助治疗特应性皮炎的疗效及安全性[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(7): 493-497. |
[2] | 刘敏, 周军英.低分子肝素治疗抗磷脂综合征相关复发性流产的Meta分析[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(6): 408-415. |
[3] | 翟晓天, 刘鑫茹, 刘静雨, 王效琰, 赵敏, 秦树存, 刘伯言.氢气干预改善动脉粥样硬化易感小鼠血浆脂蛋白相关磷脂酶A2活力及溶血磷脂酰胆碱水平[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(11): 818-822. |
[4] | 赵敏, 秦树存.氢气生物医学效应的发现、研究与应用[J]. betway必威登陆网址 (betway.com )学报, 2021, 42(5): 339-346. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||