国际肿瘤学杂志››2015,Vol. 42››Issue (6): 448-451.doi:10.3760/cma.j.issn.1673-422X.2015.06.013
孔月虹,丁继平,涂文勇
收稿日期:
2014-11-05出版日期:
2015-06-08发布日期:
2015-05-31通讯作者:
涂文勇,Email:tu4you@163.com E-mail:tu4you@163.com基金资助:
CSCO-默克雪兰诺肿瘤研究基金(Y-MT2014-004)
Kong Yuehong, Ding Jiping, Tu Wenyong
Received:
2014-11-05Online:
2015-06-08Published:
2015-05-31Contact:
Tu Wenyong E-mail:tu4you@163.com摘要:肿瘤放疗能够影响机体免疫,最新研究显示适当的放疗方式能够通过调节肿瘤微环境、激活免疫细胞、释放死亡危险信号而激活免疫,产生旁观者或远位效应。随着放疗与免疫联合治疗临床评价指标研究及临床试验的开展,将有望改变传统的肿瘤治疗模式。
孔月虹,丁继平,涂文勇. 肿瘤放疗对免疫功能的影响[J]. 国际肿瘤学杂志, 2015, 42(6): 448-451.
Kong Yuehong, Ding Jiping, Tu Wenyong. Effect of tumor radiotherapy on the immune response[J]. Journal of International Oncology, 2015, 42(6): 448-451.
[1] Delaney G, Jacob S, Featherstone C, et al. The role of radiotherapy in cancer treatment:estimating optimal utilization from a review of evidencebased clinical guidelines[J]. Cancer, 2005, 104(6): 1129-1137. [2] Lavin MF. Ataxiatelangiectasia: from a rare disorder to a paradigm for cell signalling and cancer[J]. Nat Rev Mol Cell Biol, 2008, 9 (10): 759-769. [3] Shiao SL, Coussens LM. The tumorimmune microenvironment and response to radiation therapy[J]. J Mammary Gland Biol Neoplasia, 2010, 15(4): 411-421. [4] Germano G, Allavena P, Mantovani A. Cytokines as a key component of cancerrelated inflammation[J]. Cytokine, 2008, 43 (3): 374-379. [5] Gupta A, Probst HC, Vuong V, et al. Radiotherapy promotes tumorspecific effector CD8+ T cells via dendritic cell activation[J]. J Immunol, 2012, 189(2): 558-566. [6] Lee Y, Auh SL, Wang Y, et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment[J]. Blood, 2009, 114 (3): 589-595. [7] Matsumura S, Wang B, Kawashima N, et al. Radiationinduced CXCL16 release by breast cancer cells attracts effector T cells[J]. J Immunol, 2008, 181(5): 3099-3107. [8] Burnette B, Weichselbaum RR. Radiation as an immune modulator[J]. Semin Radiat Oncol, 2013, 23 (4): 273-280. [9] Park B, Yee C, Lee K. The effect of radiation on the immune response to cancers[J]. Int J Mol Sci, 2014, 15(1): 927-943. [10] Lugade A, Sorensen E, Gerber S, et al. Radiationinduced IFNgamma production within the tumor microenvironment influences antitumor immunity[J]. J Immunol, 2008, 180 (5): 3132-3139. [11] Demaria S, Pilones KA, VanpouilleBox C, et al. The optimal partnership of radiation and immunotherapy: from preclinical studies to clinical translation[J]. Radiat Res, 2014, 182(2): 170-181. [12] Yang KL, Wang YS, Chang CC, et al. Reciprocal complementation of the tumoricidal effects of radiation and natural killer cells[J]. PLoS One, 2013, 8(4): e61797. [13] Zitvogel L, Kepp O, Kroemer G. Decoding cell death signals in inflammation and immunity[J]. Cell, 2010, 140(6): 798-804. [14] Chaurio RA, Janko C, Munoz LE, et al. Phospholipids: key players in apoptosis and immune regulation[J]. Molecules, 2009, 14(12): 4892-4914. [15] Kolb R, Liu GH, Janowski AM, et al. Inflammasomes in cancer: a doubleedged sword[J]. Protein Cell, 2014, 5(1): 12-20. [16] Obeid M, Tesniere A, Ghiringhelli F, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death[J]. Nat Med, 2007, 13(1): 54-61. [17] Trabanelli S, Ocadlikova D, Gulinelli S, et al. Extracellular ATP exerts opposite effects on activated and regulatory CD4+ T cells via purinergic P2 receptor activation[J]. J Immunol, 2012, 189(3): 1303-1310. [18] Gaipl US, Multhoff G, Scheithauer H, et al. Kill and spread the word: stimulation of antitumor immune responses in the context of radiotherapy[J]. Immunotherapy, 2014, 6 (5): 597-610. [19] Bianchi ME. DAMPs, PAMPs and alarmins:all we need to know about danger[J]. J Leukoc Biol, 2007, 81(1): 1-5. [20] Turk MJ, GuevaraPatio JA, Rizzuto GA, et al. Concomitant tumor immunity to a poorly immunogenic melanoma is prevented by regulatory T cells[J]. J Exp Med, 2004, 200(6): 771-782. [21] Qu Y, Jin S, Zhang A, et al. Gammaray resistance of regulatory CD4+CD25+Foxp3+ T cells in mice[J]. Radiat Res, 2010, 173(2): 148-157. [22] Postow MA, Callahan MK, Barker CA, et al. Immunologic correlates of the abscopal effect in a patient with melanoma[J]. N Engl J Med, 2012, 366(10): 925-931. [23] Schaue D, CominAnduix B, Ribas A, et al. Tcell responses to survivin in cancer patients undergoing radiation therapy[J]. Clin Cancer Res, 2008, 14(15): 4883-4890. [24] Chen W, Jin W, Hardegen N, et al. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGFbeta induction of transcription factor Foxp3[J]. J Exp Med, 2003, 198(12): 1875-1886. [25] Suzuki Y, Mimura K, Yoshimoto Y, et al. Immunogenic tumor cell death induced by chemoradiotherapy in patients with esophageal squamous cell carcinoma[J]. Cancer Res, 2012, 72(16): 3967-3976. [26] Paul S, Smilenov LB, Amundson SA. Widespread decreased expression of immune function genes in human peripheral blood following radiation exposure[J]. Radiat Res, 2013, 180(6): 575-583. [27] ElSaghire H, Thierens H, Monsieurs P, et al. Gene set enrichment analysis highlights different gene expression profiles in whole blood samples Xirradiated with low and high doses[J]. Int J Radiat Biol, 2013, 89(8): 628-638. [28] Palma P, Cuadros M, CondeMuino R, et al. Microarray profiling of mononuclear peripheral blood cells identifies novel candidate genes related to chemoradiation response in rectal cancer[J]. PLoS One, 2013, 8(9): e74034. [29] Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of antiPDL1 antibody in patients with advanced cancer[J]. N Engl J Med, 2012, 366(26): 2455-2465. [30] Lipson EJ, Sharfman WH, Drake CG, et al. Durable cancer regression offtreatment and effective reinduction therapy with an antiPD1 antibody[J]. Clin Cancer Res, 2013, 19 (2): 462-468. |
[1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲.血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. |
[2] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊.局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[3] | 袁健, 黄燕华.Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. |
[4] | 陈红健, 张素青.血清miR-24-3p、H2AFX与肝癌患者临床病理特征及术后复发的关系研究[J]. 国际肿瘤学杂志, 2024, 51(6): 344-349. |
[5] | 郭泽浩, 张俊旺.PFDN及其亚基在肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2024, 51(6): 350-353. |
[6] | 张百红, 岳红云.新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. |
[7] | 许凤琳, 吴刚.EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[8] | 王盈, 刘楠, 郭兵.抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[9] | 张蕊, 褚衍六.基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[10] | 高凡, 王萍, 杜超, 褚衍六.肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[11] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东.ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. |
[12] | 范志鹏, 余静, 胡静, 廖正凯, 徐禹, 欧阳雯, 谢丛华.炎症标志物的变化趋势对一线接受免疫联合化疗的晚期非小细胞肺癌患者预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(5): 257-266. |
[13] | 刘静, 刘芹, 黄梅.基于SMOTE算法的食管癌放化疗患者肺部感染的预后模型构建[J]. 国际肿瘤学杂志, 2024, 51(5): 267-273. |
[14] | 杨琳, 路宁, 温华, 张明鑫, 朱琳.炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[15] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝.癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||