国际肿瘤学杂志››2018,Vol. 45››Issue (12): 751-755.doi:10.3760/cma.j.issn.1673-422X.2018.12.011
王阿香,高全立
出版日期:
2018-12-08发布日期:
2019-02-01通讯作者:
高全立 E-mail:gaoquanli1@aliyun.com基金资助:
河南省医学科技攻关计划(201701030);河南省科技攻关计划(162300410095)
Wang Axiang, Gao Quanli
Online:
2018-12-08Published:
2019-02-01Contact:
Gao Quanli E-mail:gaoquanli1@aliyun.comSupported by:
Henan Medical Science and Technique Foundation (201701030); Henan Provincial Scientific and Technological Project (162300410095)
摘要:随着肿瘤精准免疫治疗的发展,寻找预测程序性死亡受体1(PD1)/程序性死亡配体1(PDL1)响应能力的生物标志物成为该领域研究的一大热点。迄今已有多项预测指标如肿瘤组织PDL1的表达、肿瘤浸润淋巴细胞、肿瘤突变负荷、血清学标记甚至放射学指标在抗PD1/PDL1免疫治疗过程中显现了它们的价值,但每个预测指标都有其局限性。
王阿香,高全立. PD-1/PD-L1抑制剂疗效预测的生物标志物[J]. 国际肿瘤学杂志, 2018, 45(12): 751-755.
Wang Axiang, Gao Quanli. Predictive biomarkers of efficacy to PD-1/PD-L1 inhibitors[J]. Journal of International Oncology, 2018, 45(12): 751-755.
[1] Blank C, Gajewski TF, Mackensen A. Interaction of PDL1 on tumor cells with PD1 on tumorspecific T cells as a mechanism of immune evasion: implications for tumor immunotherapy[J]. Cancer Immunol Immunother, 2005, 54(4): 307314. DOI: 10.1007/s002620040593x. [2] Liu B, Song Y, Liu D. Recent development in clinical applications of PD1 and PDL1 antibodies for cancer immunotherapy[J]. J Hematol Oncol, 2017, 10(1): 174. DOI: 10.1186/s1304501705419. [3] Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of antiPD1 antibody in cancer[J]. N Engl J Med, 2012, 366(26): 24432454. DOI: 10.1056/NEJMoa1200690. [4] Rizvi NA, Mazieres J, Planchard D, et al. Activity and safety of nivolumab, an antiPD1 immune checkpoint inhibitor, for patients with advanced, refractory squamous nonsmallcell lung cancer (CheckMate 063): a phase 2, singlearm trial[J]. Lancet Oncol, 2015, 16(3): 257265. DOI: 10.1016/S14702045(15)700549. [5] Brahmer JR, RodriguezAbreu D, Robinson AG, et al. Healthrelated qualityoflife results for pembrolizumab versus chemotherapy in advanced, PDL1positive NSCLC (KEYNOTE024): a multicentre, international, randomised, openlabel phase 3 trial[J]. Lancet Oncol, 2017, 18(12): 16001609. DOI: 10.1016/S14702045(17)306903. [6] Shen X, Zhao B. Efficacy of PD1 or PDL1 inhibitors and PDL1 expression status in cancer: metaanalysis[J]. BMJ, 2018, 362: k3529. DOI: 10.1136/bmj.k3529. [7] Mahoney KM, Sun H, Liao X, et al. PDL1 antibodies to its Cytoplasmic domain most clearly delineate cell membranesin immunohistochemical staining of tumor cells[J]. Cancer Immunol Res, 2015, 3(12): 13081315. DOI: 10.1158/23266066.CIR150116. [8] Hirsch FR, McElhinny A, Stanforth D, et al. PDL1 immunohistochemistry assays for lung cancer: results from phase 1 of the blueprint PDL1 IHC assay comparison project[J]. J Thorac Oncol, 2017, 12(2): 208222. DOI: 10.1016/j.jtho.2016.11.2228. [9] Garon EB, Rizvi NA, Hui R, et al. Pembrolizumab for the treatment of nonsmallcell lung cancer[J]. N Engl J Med, 2015, 372(21): 20182028. DOI: 10.1056/NEJMoa1501824. [10] Taube JM, Klein A, Brahmer JR, et al. Association of PD1, PD1 ligands, and other features of the tumor immune microenvironment with response to antiPD1 therapy[J]. Clin Cancer Res, 2014, 20(19): 50645074. DOI: 10.1158/10780432.CCR133271. [11] Ramakrishnan R, Assudani D, Nagaraj S, et al. Chemotherapy enhances tumor cell susceptibility to CTLmediated killing during cancer immunotherapy in mice[J]. J Clin Invest, 2010, 120(4): 11111124. DOI: 10.1172/JCI40269. [12] TwymanSaint VC, Rech AJ, Maity A, et al. Radiation and dual checkpoint blockade activate nonredundant immune mechanisms in cancer[J]. Nature, 2015, 520(7547): 373377. DOI: 10.1038/nature14292. [13] Heskamp S, Hobo W, MolkenboerKuenen JD, et al. Noninvasive imaging of tumor PDL1 expression using radiolabeled antiPDL1 antibodies[J]. Cancer Res, 2015, 75(14): 29282936. DOI: 10.1158/00085472.CAN143477. [14] Tumeh PC, Harview CL, Yearley JH, et al. PD1 blockade induces responses by inhibiting adaptive immune resistance[J]. Nature, 2014, 515(7528): 568571. DOI: 10.1038/nature13954. [15] Daud AI, Loo K, Pauli ML, et al. Tumor immune profiling predicts response to antiPD1 therapy in human melanoma[J]. J Clin Invest, 2016, 126(9): 34473452. DOI: 10.1172/JCI87324. [16] Chen DS, Mellman I. Elements of cancer immunity and the cancerimmune set point[J]. Nature, 2017, 541(7637): 321330. DOI: 10.1038/nature21349. [17] Teng MW, Ngiow SF, Ribas A, et al. Classifying cancers based on Tcell infiltration and PDL1[J]. Cancer Res, 2015, 75(11): 21392145. DOI: 10.1158/00085472.CAN150255. [18] Bhattacharyya NP, Skandalis A, Ganesh A, et al. Mutator phenotypes in human colorectal carcinoma cell lines[J]. Proc Natl Acad Sci U S A, 1994, 91(14): 63196323. [19] Le DT, Uram JN, Wang H, et al. PD1 blockade in tumors with mismatchrepair deficiency[J]. N Engl J Med, 2015, 372(26): 25092520. DOI: 10.1056/NEJMoa1500596. [20] Chen KH, Yuan CT, Tseng LH, et al. Case report: mismatch repair proficiency and microsatellite stability in gastric cancer may not predict programmed death1 blockade resistance[J]. J Hematol Oncol, 2016, 9: 29. DOI: 10.1186/s1304501602590. [21] Chalmers ZR, Connelly CF, Fabrizio D, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden[J]. Genome Med, 2017, 9(1): 34. DOI: 10.1186/s1307301704242. [22] Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD1 blockade in nonsmall cell lung cancer[J]. Science, 2015, 348(6230): 124128. DOI: 10.1126/science.aaa1348. [23] Goodman AM, Kato S, Bazhenova L, et al. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers[J]. Mol Cancer Ther, 2017, 16(11): 25982608. DOI: 10.1158/15357163.MCT170386. [24] Rizvi H, SanchezVega F, La K, et al. Molecular determinants of response to antiprogrammed cell death (PD)1 and antiprogrammed deathligand 1 (PDL1) blockade in patients with nonsmallcell lung cancer profiled with targeted nextgeneration sequencing[J]. J Clin Oncol, 2018, 36(7): 633641. DOI: 10.1200/JCO.2017.75.3384. [25] Mandal R, Chan TA. Personalized oncology meets immunology: the path toward precision immunotherapy[J]. Cancer Discov, 2016, 6(7): 703713. DOI: 10.1158/21598290.CD160146. [26] McGranahan N, Furness AJ, Rosenthal R, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade[J]. Science, 2016, 351(6280): 14631469. DOI: 10.1126/science.aaf1490. [27] Domingo E, FreemanMills L, Rayner E, et al. Somatic POLE proofreading domain mutation, immune response, and prognosis in colorectal cancer: a retrospective, pooled biomarker study[J]. Lancet Gastroenterol Hepatol, 2016, 1(3): 207216. DOI: 10.1016/S24681253(16)300140. [28] Briggs S, Tomlinson I. Germline and somatic polymerase epsilon and delta mutations define a new class of hypermutated colorectal and endometrial cancers[J]. J Pathol, 2013, 230(2): 148153. DOI: 10.1002/path.4185. [29] Peng W, Chen JQ, Liu C, et al. Loss of PTEN promotes resistance to T cellmediated immunotherapy[J]. Cancer Discov, 2016, 6(2): 202216. DOI: 10.1158/21598290.CD150283. [30] Kato S, Goodman A, Walavalkar V, et al. Hyperprogressors after immunotherapy: analysis of genomic alterations associated with accelerated growth rate[J]. Clin Cancer Res, 2017, 23(15): 42424250. DOI: 10.1158/10780432.CCR163133. [31] Weide B, Martens A, Hassel JC, et al. Baseline biomarkers for outcome of melanoma patients treated with pembrolizumab[J]. Clin Cancer Res, 2016, 22(22): 54875496. DOI: 10.1158/10780432.CCR160127. [32] Sanmamed MF, PerezGracia JL, Schalper KA, et al. Changes in serum interleukin8 (IL8) levels reflect and predict response to antiPD1 treatment in melanoma and nonsmallcell lung cancer patients[J]. Ann Oncol, 2017, 28(8): 19881995. DOI: 10.1093/annonc/mdx190. [33] Kaira K, Higuchi T, Naruse I, et al. Metabolic activity by (18)FFDGPET/CT is predictive of early response after nivolumab in previously treated NSCLC[J]. Eur J Nucl Med Mol Imaging, 2018, 45(1): 5666. DOI: 10.1007/s0025901738061. [34] Seith F, Forschner A, Schmidt H, et al. 18FFDGPET detects complete response to PD1therapy in melanoma patients two weeks after therapy start[J]. Eur J Nucl Med Mol Imaging, 2018, 45(1): 95101. DOI: 10.1007/s0025901738132. |
[1] | 刘玉兰, 井海燕, 孙静, 宋伟, 沙丹.胃癌免疫治疗疗效预测及预后标志物的研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 175-180. |
[2] | 王雅倩, 杜逸玮, 王兴, 贾军梅.小细胞肺癌免疫治疗预后预测指标研究进展[J]. 国际肿瘤学杂志, 2023, 50(3): 179-182. |
[3] | 范珊琳, 汪品秀, 孔飞, 周玉洁, 袁文臻.胃癌新辅助化疗后肿瘤退缩分级预测因素的研究进展[J]. 国际肿瘤学杂志, 2023, 50(2): 112-116. |
[4] | 焦盼盼, 薛丽娟, 詹娟.免疫检查点抑制剂相关不良反应的危险因素与预测因素[J]. 国际肿瘤学杂志, 2023, 50(12): 739-744. |
[5] | 陈郁, 许华, 刘海, 陈士新.基于CT影像学特征的恶性肺纯磨玻璃结节患者病理分型预测模型构建[J]. 国际肿瘤学杂志, 2023, 50(11): 655-660. |
[6] | 丁心静, 丁江华.皮肤免疫相关不良事件与PD-1/PD-L1抑制剂临床疗效相关性的研究进展[J]. 国际肿瘤学杂志, 2022, 49(4): 225-228. |
[7] | 李宁, 张玢琪.免疫检查点抑制剂在子宫内膜癌中的应用[J]. 国际肿瘤学杂志, 2022, 49(2): 125-128. |
[8] | 朱一硕, 崔玉洁, 刘崎, 李军, 范月超.脑胶质瘤患者术后早期复发危险因素分析及预测模型构建[J]. 国际肿瘤学杂志, 2022, 49(2): 79-83. |
[9] | 欧惠仪, 王越, 彭承宏.PD-L1与Treg在肿瘤免疫及治疗中的相关性[J]. 国际肿瘤学杂志, 2021, 48(6): 350-353. |
[10] | 张敏, 周丽娜, 徐姗姗, 陈骏.肿瘤免疫治疗相关预测生物标志物研究进展[J]. 国际肿瘤学杂志, 2020, 47(8): 487-491. |
[11] | 徐阳涛, 陈彪, 何晓琴, 徐细明.免疫治疗超进展的研究进展[J]. 国际肿瘤学杂志, 2020, 47(12): 737-740. |
[12] | 刘虹, 吴剑, 李宏江, 羊晓勤.微小RNA在乳腺癌检测、治疗、耐药及预后中的研究进展[J]. 国际肿瘤学杂志, 2020, 47(12): 756-760. |
[13] | 张李卓, 钱杨洋, 郑国湾, 葛明华.PD-1/PD-L1在肿瘤中的机制研究及其在甲状腺癌中的诊治价值[J]. 国际肿瘤学杂志, 2020, 47(1): 39-42. |
[14] | 沈夏波, 王伟, 潘跃银.血细胞参数在小细胞肺癌治疗中的预测作用[J]. 国际肿瘤学杂志, 2019, 46(8): 496-499. |
[15] | 白馨雅, 张金梦, 孙洋, 安永恒.免疫检查点抑制剂在晚期非小细胞肺癌综合治疗中的应用[J]. 国际肿瘤学杂志, 2019, 46(8): 500-504. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||