国际肿瘤学杂志››2017,Vol. 44››Issue (6): 464-.doi:10.3760/cma.j.issn.1673-422X.2017.06.016
毛昀,李利亚
出版日期:
2017-06-08发布日期:
2017-06-16通讯作者:
李利亚 E-mail:li.liya2007@163.com基金资助:
国家自然科学基金(81372412)
Mao Yun, Li Liya
Online:
2017-06-08Published:
2017-06-16Contact:
Li Liya E-mail:li.liya2007@163.comSupported by:
National Natural Science Foundation of China (81372412)
摘要:电场治疗肿瘤技术在神经胶质瘤的治疗中具有重要意义,其包括直流电场和交流电场。直流电场影响胶质瘤细胞的迁移,可作为治疗胶质瘤的新线索;交流电场能抑制胶质瘤细胞的增殖、侵袭并诱导凋亡,明显延长胶质瘤患者生存期及提高患者生命质量。
毛昀,李利亚. 电场治疗神经胶质瘤的研究进展[J]. 国际肿瘤学杂志, 2017, 44(6): 464-.
Mao Yun, Li Liya. Research progress of electric field in the treatment of glioma[J]. Journal of International Oncology, 2017, 44(6): 464-.
[1] Omuro A, DeAngelis LM. Glioblastoma and other malignant gliomas: a clinical review[J]. JAMA, 2013, 310(17): 1842-1850. DOI: 10.1001/jama.2013.280319. [2] Liu Y, Yan W, Zhang W, et al. MiR218 reverses high invasiveness of glioblastoma cells by targeting the oncogenic transcription factor LEF1[J]. Oncol Rep, 2012, 28(3): 1013-1021. DOI: 10.3892/or.2012.1902. [3] Griffin M, Iqbal SA, Sebastian A, et al. Degenerate wave and capacitive coupling increase human MSC invasion and proliferation while reducing cytotoxicity in an in vitro wound healing model[J]. PLoS One, 2011, 6 (8): e23404. DOI: 10.1371/journal.pone.0023404. [4] Creecy CM, O′neill CF, Arulanandam BP, et al. Mesenchymal stem cell osteodifferentiation in response to alternating electric current[J]. Tissue Eng Part A, 2013, 19(34): 467-474. DOI: 10.1089/ten.tea.2012.0091. [5] Zhao Z, Watt C, Karystinou A, et al. Directed migration of human bone marrow mesenchymal stem cells in a physiological direct current electric field[J]. Eur Cell Mater, 2011, 22: 344-358. [6] Yamashita M. Fluctuations in nuclear envelope′s potential mediate synchronization of early neural activity[J]. Biochem Biophys Res Commun, 2011, 406(1): 107-111. DOI: 10.1016/j.bbrc.2011.02.004. [7] Cuzick J, Holland R, Barth V, et al. Electropotential measurements as a new diagnostic modality for breast cancer[J]. Lancet, 1998, 352 (9125): 359-363. [8] Mycielska ME, Djamgoz MB. Cellular mechanisms of directcurrent electric field effects: galvanotaxis and metastatic disease[J]. J Cell Sci, 2004, 117 (Pt 9): 1631-1639. [9] Cao L, Wei D, Reid B, et al. Endogenous electric currents might guide rostral migration of neuroblasts[J]. EMBO Rep, 2013, 14(2): 184-190. DOI: 10.1038/embor.2012.215. [10] Cuddapah VA, Robel S, Watkins S, et al. A neurocentric perspective on glioma invasion[J]. Nat Rev Neurosci, 2014, 15(7): 455-465. DOI: 10.1038/nrn3765. [11] 李飞. 脑胶质瘤侵袭生长的相关因素及直流电场诱导U87胶质瘤细胞定向迁移[D]. 重庆: 第三军医大学, 2011. [12] Li F, Chen T, Hu S, et al. Superoxide mediates direct current electric fieldinduced directional migration of glioma cells through the activation of AKT and ERK[J]. PLoS One, 2013, 8(4): e61195. DOI: 10.1371/journal.pone.0061195. [13] Huang YJ, Hoffmann G, Wheeler B, et al. Cellular microenvironment modulates the galvanotaxis of brain tumor initiating cells[J]. Sci Rep, 2016, 6: 21583. DOI: 10.1038/srep21583. [14] Wu S, Wang Y, Guo J, et al. Nanosecond pulsed electric fields as a novel drug free therapy for breast cancer: an in vivo study[J]. Cancer Lett, 2014, 343(2): 268-274. DOI: 10.1016/j.canlet.2013.09.032. [15] Guo F, Yao C, Li C, et al. In vivo evidences of nanosecond pulsed electric fields for melanoma malignancy treatment on tumorbearing BALB/c nude mice[J]. Technol Cancer Res Treat, 2014, 13(4): 337-344. DOI: 10.7785/tcrt.2012.500385. [16] Kirson ED, Gurvich Z, Schneiderman R, et al. Disruption of cancer cell replication by alternating electric fields[J]. Cancer Res, 2004, 64(9): 3288-3295. DOI: 10.1158/00085472. [17] Gutin PH, Wong ET. Noninvasive application of alternating electric fields in glioblastoma: a fourth cancer treatment modality[J]. Am Soc Clin Oncol Educ Book, 2012, 32: 126-131. DOI: 10.14694/EdBook_AM.2012.32.126. [18] Gera N, Yang A, Holtzman TS, et al. Tumor treating fields perturb the localization of septins and cause aberrant mitotic exit[J]. PLoS One, 2015, 10(5): e0125269. DOI: 10.1371/journal.pone.0125269. [19] Kim EH, Song HS, Yoo SH, et al. Tumor treating fields inhibit glioblastoma cell migration, invasion and angiogenesis[J]. Oncotarget, 2016, 7(40): 65125-65136. DOI: 10.18632/oncotarget.11372. [20] Kirson ED, Dbal V, Tovarys F, et al. Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors[J]. Proc Nat Acad Sci USA, 2007, 104(24): 10152-10157. DOI: 10.1073/pnas.0702916104. [21] Wenger C, Salvador R, Basser PJ, et al. The electric field distribution in the brain during TTFields therapy and its dependence on tissue dielectric properties and anatomy: a computational study[J]. Phys Med Biol, 2015, 60(18): 7339-7357. DOI: 10.1088/00319155/60/18/7339. [22] Stupp R, Wong ET, Kanner AA, et al. NovoTTF100A versus physician′s choice chemotherapy in recurrent glioblastoma: a randomised phase Ⅲ trial of a novel treatment modality[J]. Eur J Cancer, 2012, 48(14): 2192-2202. DOI: 10.1016/j.ejca.2012.04.011. [23] Stupp R, Taillibert S , Kanner AA, et al. Maintenance therapy with tumortreating fields plus temozolomide vs temozolomide alone for glioblastoma: a randomized clinical trial[J]. JAMA, 2015, 314 (23): 2535-2543. DOI: 10.1001/jama.2015.16669. [24] Ansstas G, Tran DD. Treatment with tumortreating fields therapy and pulse dose bevacizumab in patients with bevacizumabrefractory recurrent glioblastoma: a case series[J]. Case Rep Neurol, 2016, 8(1): 1-9. DOI: 10.1159/000442196. [25] Wong ET, Lok E, Swanson KD. Clinical benefit in recurrent glioblastoma from adjuvant NovoTTF100A and TCCC after temozolomide and bevacizumab failure: a preliminary observation[J]. Cancer Med, 2015, 4(3): 383-391. DOI: 10.1002/cam4.421. [26] Fonkem E, Wong ET. NovoTTF100A: a new treatment modality for recurrent glioblastoma[J]. Expert Rev Neurother, 2012, 12(8): 895-899. [27] Turner SG, Gergel T, Wu H, et al. The effect of field strength on glioblastoma multiforme response in patients treated with the NovoTTFTM100A system[J]. World J Surg Oncol, 2014, 12: 162. DOI: 10.1186/1477781912162. |
[1] | 刘萍萍, 何学芳, 张翼, 杨旭, 张珊珊, 季一飞.原发性脑胶质瘤患者术后复发危险因素及预测模型构建[J]. 国际肿瘤学杂志, 2024, 51(4): 193-197. |
[2] | 肖楠, 孙鹏飞.氧化应激在胶质瘤放化疗敏感性中的研究进展[J]. 国际肿瘤学杂志, 2022, 49(6): 357-361. |
[3] | 孔春禹, 孙鹏飞.SLC7A11与胶质瘤[J]. 国际肿瘤学杂志, 2022, 49(10): 604-607. |
[4] | 郭世豪, 任叶青, 郭庚.脑胶质瘤血管生成拟态分子机制[J]. 国际肿瘤学杂志, 2021, 48(6): 362-365. |
[5] | 王宪伟, 史美燕, 王凤芹, 齐福, 王朝喆, 周飞.TSA上调miR-4298靶向抑制PADI4表达在诱导U251细胞凋亡中的作用[J]. 国际肿瘤学杂志, 2021, 48(4): 193-199. |
[6] | 张雯, 胡伟国, 宋启斌.3D-ASL与DCE-MRI在脑胶质瘤复发与放射性脑坏死鉴别诊断中的价值[J]. 国际肿瘤学杂志, 2021, 48(10): 631-634. |
[7] | 赵聪选, 于韬.胶质瘤相关基因的挖掘及预测[J]. 国际肿瘤学杂志, 2020, 47(5): 293-296. |
[8] | 南阳, 钟跃.长非编码RNA在神经胶质瘤研究中的新进展[J]. 国际肿瘤学杂志, 2020, 47(2): 98-102. |
[9] | 张雯, 宋启斌, 胡伟国.多模态磁共振成像在脑胶质瘤中的临床应用[J]. 国际肿瘤学杂志, 2020, 47(11): 686-690. |
[10] | 陈亮, 秦军, 雷军荣, 刘俊, 王璐.miR-1254通过靶向CSF-1抑制胶质瘤细胞的增殖和侵袭能力[J]. 国际肿瘤学杂志, 2020, 47(10): 577-584. |
[11] | 张千慧, 张洋, 宿伟鹏, 张宋安, 刘攀, 赵化荣.LSD1、MGMT和Ki-67在高级别胶质瘤中的表达及对预后的影响[J]. 国际肿瘤学杂志, 2019, 46(9): 519-525. |
[12] | 衣琳, 邱实.紫草素抗胶质瘤效应及其作用机制[J]. 国际肿瘤学杂志, 2019, 46(8): 489-491. |
[13] | 于学娟, 安宏伟, 孙亚梅, 姜政, 张学海, 杨文敬, 张伟. MMP2、TIMP2、Ki-67、P53在胶质瘤组织中的表达及意义[J]. 国际肿瘤学杂志, 2019, 46(12): 718-722. |
[14] | 卢迪,张钧栋,郭庚,王小刚.干扰素通路中的关键分子诱导脑胶质瘤细胞凋亡的机制[J]. 国际肿瘤学杂志, 2018, 45(7): 432-435. |
[15] | 张园园,朱淑霞.微小RNA-495在神经胶质瘤中的作用机制[J]. 国际肿瘤学杂志, 2018, 45(6): 362-364. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||