国际肿瘤学杂志››2018,Vol. 45››Issue (10): 624-626.doi:10.3760/cma.j.issn.1673-422X.2018.10.010
丁金晔,程忠平
收稿日期:
2018-04-10出版日期:
2018-10-08发布日期:
2018-12-21通讯作者:
程忠平 E-mail:mdcheng18@tongji.edu.cnDing Jinye, Cheng Zhongping
Received:
2018-04-10Online:
2018-10-08Published:
2018-12-21Contact:
Cheng Zhongping E-mail:mdcheng18@tongji.edu.cn摘要:坏死性凋亡相关复合物是坏死性凋亡信号通路中的关键信号分子。它的形成受到坏死小体和坏死性凋亡小体等一系列因素的调控。研究发现,坏死性凋亡相关复合物与多种肿瘤密切相关,如胰腺导管腺癌、胶质瘤等。深入研究其调控机制有望为肿瘤分子治疗提供新思路。
丁金晔,程忠平. 坏死性凋亡相关复合物与肿瘤[J]. 国际肿瘤学杂志, 2018, 45(10): 624-626.
Ding Jinye, Cheng Zhongping. Complexities in necroptosis and tumor[J]. Journal of International Oncology, 2018, 45(10): 624-626.
[1] Vanden Berghe T, Linkermann A, JouanLanhouet S, et al. Regulated necrosis: the expanding network of non-apoptotic cell death pathways[J]. Nat Rev Mol Cell Biol, 2014, 15(2): 134-147. DOI: 10.1038/nrm3737. [2] Seifert L, Werba G, Tiwari S, et al. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincleinduced immune suppression[J]. Nature, 2016, 532(7598): 245-249. DOI: 10.1038/nature17403. [3] Lu B, Gong X, Wang ZQ, et al. Shikonin induces glioma cell necroptosis in vitro by ROS overproduction and promoting RIP1/RIP3 necrosome formation[J]. Acta Pharmacol Sin, 2017, 38(11): 15431553. DOI: 10.1038/aps.2017.112. [4] Seifert L, Miller G. Molecular pathways: the necrosomea target for cancer therapy[J]. Clin Cancer Res, 2017, 23(5): 1132-1136. DOI: 10.1158/1078-0432.CCR-16-0968. [5] Liu S, Liu H, Johnston A, et al. MLKL forms disulfide bonddependent amyloidlike polymers to induce necroptosis[J]. Proc Natl Acad Sci U S A, 2017, 114(36): E7450-E7459. DOI: 10.1073/pnas.1707531114. [6] Vanden Berghe T, Hassannia B, Vandenabeele P. An outline of necrosome triggers[J]. Cell Mol Life Sci, 2016, 73(1112): 2137-2152. DOI: 10.1007/s00018-016-2189-y. [7] Tenev T, Bianchi K, Darding M, et al. The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs[J]. Mol Cell, 2011, 43(3): 432-448. DOI: 10.1016/j.molcel.2011.06.006. [8] Dickens LS, Powley IR, Hughes MA, et al. The ′complexities′ of life and death: death receptor signalling platforms[J]. Exp Cell Res, 2012, 318(11): 1269-1277. DOI: 10.1016/j.yexcr.2012.04.005. [9] Ali M, Mocarski ES. Proteasome inhibition blocks necroptosis by attenuating death complex aggregation[J]. Cell Death Dis, 2018, 9(3): 346. DOI: 10.1038/s41419-018-0371-x. [10] Feoktistova M, Geserick P, Kellert B, et al. cIAPs block Ripoptosome formation, a RIP1/caspase8 containing intracellular cell death complex differentially regulated by cFLIP isoforms[J]. Mol Cell, 2011, 43(3): 449-463. DOI: 10.1016/j.molcel.2011.06.011. [11] Hanson B. Necroptosis: a new way of dying?[J]. Cancer Biol Ther, 2016, 17(9): 899-910. DOI: 10.1080/15384047.2016.1210732. [12] Su Z, Yang Z, Xie L, et al. Cancer therapy in the necroptosis era[J]. Cell Death Differ, 2016, 23(5): 748756. DOI: 10.1038/cdd.2016.8. [13] de Almagro MC, Goncharov T, Newton K, et al. Cellular IAP proteins and LUBAC differentially regulate necrosomeassociated RIP1 ubiquitination[J]. Cell Death Dis, 2015, 6: e1800. DOI: 10.1038/cddis.2015.158. [14] Imre G, Larisch S, Rajalingam K. Ripoptosome: a novel IAPregulated cell deathsignalling platform[J]. J Mol Cell Biol, 2011, 3(6): 324-326. DOI: 10.1093/jmcb/mjr034. [15] Schilling R, Geserick P, Leverkus M. Characterization of the ripoptosome and its components: implications for antiinflammatory and cancer therapy[J]. Methods Enzymol, 2014, 545: 83-102. DOI: 10.1016/B978-0-12-801430-1.00004-4. [16] McCabe KE, Bacos K, Lu D, et al. Triggering necroptosis in cisplatin and IAP antagonistresistant ovarian carcinoma[J]. Cell Death Dis, 2014, 5: e1496. DOI: 10.1038/cddis.2014.448. [17] Shi S, Wang Q, Xu J, et al. Synergistic anticancer effect of cisplatin and Chal-24 combination through IAP and c-FLIPL degradation, Ripoptosome formation and autophagymediated apoptosis[J]. Oncotarget, 2015, 6(3): 16401651. DOI: 10.18632/oncotarget.2746. [18] Selmi T, Alecci C, dell Aquila M, et al. ZFP36 stabilizes RIP1 via degradation of XIAP and cIAP2 thereby promoting ripoptosome assembly[J]. BMC Cancer, 2015, 15: 357. DOI: 10.1186/s1288501513885. [19] Schroeder A, Warnken U, Roth D, et al. Targeting thioredoxin1 by dimethyl fumarate induces ripoptosomemediated cell death[J]. Sci Rep, 2017, 7: 43168. DOI: 10.1038/srep43168. |
[1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲.血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. |
[2] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊.局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[3] | 袁健, 黄燕华.Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. |
[4] | 陈红健, 张素青.血清miR-24-3p、H2AFX与肝癌患者临床病理特征及术后复发的关系研究[J]. 国际肿瘤学杂志, 2024, 51(6): 344-349. |
[5] | 郭泽浩, 张俊旺.PFDN及其亚基在肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2024, 51(6): 350-353. |
[6] | 张百红, 岳红云.新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. |
[7] | 许凤琳, 吴刚.EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[8] | 王盈, 刘楠, 郭兵.抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[9] | 张蕊, 褚衍六.基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[10] | 高凡, 王萍, 杜超, 褚衍六.肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[11] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东.ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. |
[12] | 刘静, 刘芹, 黄梅.基于SMOTE算法的食管癌放化疗患者肺部感染的预后模型构建[J]. 国际肿瘤学杂志, 2024, 51(5): 267-273. |
[13] | 杨琳, 路宁, 温华, 张明鑫, 朱琳.炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[14] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝.癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
[15] | 张宁宁, 杨哲, 檀丽梅, 李振宁, 王迪, 魏永志.宫颈细胞DNA倍体分析联合B7-H4和PKCδ对宫颈癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(5): 286-291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||