国际肿瘤学杂志››2023,Vol. 50››Issue (11): 683-687.doi:10.3760/cma.j.cn371439-20230725-00129
收稿日期:
2023-07-25修回日期:
2023-10-12出版日期:
2023-11-08发布日期:
2024-01-11通讯作者:
殷红 E-mail:hongyin_74@126.comTao Hong, Yin Hong(), Luo Hong, Tao Jiayu
Received:
2023-07-25Revised:
2023-10-12Online:
2023-11-08Published:
2024-01-11Contact:
Yin Hong E-mail:hongyin_74@126.com摘要:
肿瘤相关巨噬细胞(TAM)在肿瘤的进展与转移中起着关键性作用,它们的特性高度依赖于肿瘤微环境(TME)的信号刺激。TAM作为肿瘤相关炎症的主要参与者,与多种实体肿瘤的预后相关。免疫检查点抑制剂(ICI)可极大地改善微卫星不稳定或错配修复缺陷结直肠癌(CRC)患者的生存预后。然而,ICI作为单一疗法在绝大多数的CRC患者中疗效受限。尽管TAM的确切功能尚未完全阐明,但以TAM为靶点的治疗策略能明显改善CRC患者的ICI疗效,TAM作为CRC预后的预测标志物也显示出重要价值。
陶红, 殷红, 罗宏, 陶佳瑜. 靶向肿瘤相关巨噬细胞增强结直肠癌免疫检查点抑制剂疗效的潜在策略[J]. 国际肿瘤学杂志, 2023, 50(11): 683-687.
Tao Hong, Yin Hong, Luo Hong, Tao Jiayu. Potential strategies for targeting tumor-associated macrophages to enhance the efficacy of immune checkpoint inhibitors for colorectal cancer[J]. Journal of International Oncology, 2023, 50(11): 683-687.
[1] | Katsaounou K, Nicolaou E, Vogazianos P, et al. Colon cancer: from epidemiology to prevention[J].Metabolites,2022,12(6): 499. DOI:10.3390/metabo12060499. |
[2] | Li J, Chen D, Shen M. Tumor microenvironment shapes colorectal cancer progression, metastasis, and treatment responses[J].Front Med (Lausanne),2022,9: 869010. DOI:10.3389/fmed.2022.869010. |
[3] | Chen Y, Song Y, Du W, et al. Tumor-associated macrophages: an accomplice in solid tumor progression[J].J Biomed Sci,2019,26(1): 78. DOI:10.1186/s12929-019-0568-z. pmid:31629410 |
[4] | Li J, Li L, Li Y, et al. Tumor-associated macrophage infiltration and prognosis in colorectal cancer: systematic review and meta-analysis[J].Int J Colorectal Dis,2020,35(7): 1203-1210. DOI:10.1007/s00384-020-03593-z. pmid:32303831 |
[5] | Yin Y, Liu B, Cao Y, et al. Colorectal cancer-derived small extracellular vesicles promote tumor immune evasion by upregulating PD-L1 expression in tumor-associated macrophages[J].Adv Sci (Weinh),2022,9(9): 2102620. DOI:10.1002/advs.202102620. |
[6] | Li C, Xu X, Wei S, et al. Tumor-associated macrophages: potential therapeutic strategies and future prospects in cancer[J].J Immunother Cancer,2021,9(1): e001341. DOI:10.1136/jitc-2020-001341. |
[7] | Boutilier AJ, Elsawa SF. Macrophage polarization states in the tumor microenvironment[J].Int J Mol Sci,2021,22(13): 6995. DOI:10.3390/ijms22136995. |
[8] | Wu K, Lin K, Li X, et al. Redefining tumor-associated macrophage subpopulations and functions in the tumor microenvironment[J].Front Immunol,2020,11: 1731. DOI:10.3389/fimmu.2020.01731. pmid:32849616 |
[9] | Zhou J, Tang Z, Gao S, et al. Tumor-associated macrophages: recent insights and therapies[J].Front Oncol,2020,10: 188. DOI:10.3389/fonc.2020.00188. pmid:32161718 |
[10] | Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy[J].Immunity,2014,41(1): 49-61. DOI:10.1016/j.immuni.2014.06.010. pmid:25035953 |
[11] | Pan Y, Yu Y, Wang X, et al. Tumor-associated macrophages in tumor immunity[J].Front Immunol,2020,11: 583084. DOI:10.3389/fimmu.2020.583084. |
[12] | Jeong H, Kim S, Hong BJ, et al. Tumor-associated macrophages enhance tumor hypoxia and aerobic glycolysis[J].Cancer Res,2019,79(4): 795-806. DOI:10.1158/0008-5472.CAN-18-2545. pmid:30610087 |
[13] | Lan Q, Lai W, Zeng Y, et al. CCL26 participates in the PRL-3-induced promotion of colorectal cancer invasion by stimulating tumor-associated macrophage infiltration[J].Mol Cancer Ther,2018,17(1): 276-289. DOI:10.1158/1535-7163.MCT-17-0507. pmid:29051319 |
[14] | Liang ZX, Liu HS, Wang FW, et al. LncRNA RPPH1 promotes colorectal cancer metastasis by interacting with TUBB3 and by promoting exosomes-mediated macrophage M2 polarization[J].Cell Death Dis,2019,10(11): 829. DOI:10.1038/s41419-019-2077-0. |
[15] | Huang C, Ou R, Chen X, et al. Tumor cell-derived SPON2 promotes M2-polarized tumor-associated macrophage infiltration and cancer progression by activating PYK2 in CRC[J].J Exp Clin Cancer Res,2021,40(1): 304. DOI:10.1186/s13046-021-02108-0. pmid:34583750 |
[16] | Zhong Q, Fang Y, Lai Q, et al. CPEB3 inhibits epithelial-mesenchymal transition by disrupting the crosstalk between colorectal cancer cells and tumor-associated macrophages via IL-6R/STAT3 signaling[J].J Exp Clin Cancer Res,2020,39(1): 132. DOI:10.1186/s13046-020-01637-4. pmid:32653013 |
[17] | Liu C, Zhang W, Wang J, et al. Tumor-associated macrophage-derived transforming growth factor-β promotes colorectal cancer progression through HIF1-TRIB3 signaling[J].Cancer Sci,2021,112(10): 4198-4207. DOI:10.1111/cas.15101. |
[18] | Li X, Liu R, Su X, et al. Harnessing tumor-associated macrophages as aids for cancer immunotherapy[J].Mol Cancer,2019,18(1): 177. DOI:10.1186/s12943-019-1102-3. pmid:31805946 |
[19] | Cassetta L, Pollard JW. Targeting macrophages: therapeutic approaches in cancer[J].Nat Rev Drug Discov,2018,17(12): 887-904. DOI:10.1038/nrd.2018.169. pmid:30361552 |
[20] | Chun E, Lavoie S, Michaud M, et al. CCL2 promotes colorectal carcinogenesis by enhancing polymorphonuclear myeloid-derived suppressor cell population and function[J].Cell Rep,2015,12(2): 244-257. DOI:10.1016/j.celrep.2015.06.024. pmid:26146082 |
[21] | Tu MM, Abdel-Hafiz HA, Jones RT, et al. Inhibition of the CCL2 receptor, CCR2, enhances tumor response to immune checkpoint therapy[J].Commun Biol,2020,3(1): 720. DOI:10.1038/s42003-020-01441-y. pmid:33247183 |
[22] | Zhu Y, Knolhoff BL, Meyer MA, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models[J].Cancer Res,2014,74(18): 5057-5069. DOI:10.1158/0008-5472.CAN-13-3723. pmid:25082815 |
[23] | Cassier PA, Garin G, Eberst L, et al. MEDIPLEX: a phase 1 study of durvalumab (D) combined with pexidartinib (P) in patients (pts) with advanced pancreatic ductal adenocarcinoma (PDAC) and colorectal cancer (CRC)[J].J Clin Oncol,2019,37(15 suppl): 2579. DOI:10.1200/JCO.2019.37.15_suppl.2579. |
[24] | Haag GM, Springfeld C, Grün B, et al. Pembrolizumab and maraviroc in refractory mismatch repair proficient/microsatellite-stable metastatic colorectal cancer-the PICCASSO phase I trial[J].Eur J Cancer,2022,167: 112-122. DOI:10.1016/j.ejca.2022.03.017. |
[25] | De Henau O, Rausch M, Winkler D, et al. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kγ in myeloid cells[J].Nature,2016,539(7629): 443-447. DOI:10.1038/nature20554. |
[26] | Heller S, Glaeske S, Gluske K, et al. Pan-PI3K inhibition with copanlisib overcomes Treg- and M2-TAM-mediated immune suppression and promotes anti-tumor immune responses[J].Clin Exp Med,2023,23(8): 5445-5461. doi:10.1007/s10238-023-01227-6 |
[27] | Tauriello DVF, Palomo-Ponce S, Stork D, et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis[J].Nature,2018,554(7693):538-543. DOI:10.1038/nature 25492. |
[28] | Zha H, Wang X, Zhu Y, et al. Intracellular activation of complement C3 leads to PD-L1 antibody treatment resistance by modula-ting tumor-associated macrophages[J].Cancer Immunol Res,2019,7(2): 193-207. DOI:10.1158/2326-6066.CIR-18-0272. |
[29] | Wen ZF, Liu H, Gao R, et al. Tumor cell-released autophagosomes (TRAPs) promote immunosuppression through induction of M2-like macrophages with increased expression of PD-L1[J].J Immunother Cancer,2018,6(1): 151. DOI:10.1186/s40425-018-0452-5. |
[30] | Kou Y, Li Z, Sun Q, et al. Prognostic value and predictive biomarkers of phenotypes of tumour-associated macrophages in colorectal cancer[J].Scand J Immunol,2022,95(4): e13137. DOI:10.1111/sji.13137. |
[31] | Xu G, Jiang L, Ye C, et al. The ratio of CD86+/CD163+macrophages predicts postoperative recurrence in stage Ⅱ-Ⅲ colorectal cancer[J].Front Immunol,2021,12:724429. DOI:10.3389/fimmu.2021.724429. |
[32] | Zhao Y, Ge X, Xu X, et al. Prognostic value and clinicopathological roles of phenotypes of tumour-associated macrophages in colorectal cancer[J].J Cancer Res Clin Oncol,2019,145(12): 3005-3019. DOI:10.1007/s00432-019-03041-8. pmid:31650222 |
[33] | Cavnar MJ, Turcotte S, Katz SC, et al. Tumor-associated macrophage infiltration in colorectal cancer liver metastases is associated with better outcome[J].Ann Surg Oncol,2017,24(7): 1835-1842. DOI:10.1245/s10434-017-5812-8. pmid:28213791 |
[34] | Gordon SR, Maute RL, Dulken BW, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity[J].Nature,2017,545(7655): 495-499. DOI:10.1038/nature22396. |
[35] | Bortolomeazzi M, Keddar MR, Montorsi L, et al. Immunogenomics of colorectal cancer response to checkpoint blockade: analysis of the KEYNOTE 177 trial and validation cohorts[J].Gastroenterology,2021,161(4): 1179-1193. DOI:10.1053/j.gastro.2021.06.064. pmid:34197832 |
[1] | 张蕊, 褚衍六.基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[2] | 高凡, 王萍, 杜超, 褚衍六.肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[3] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝.癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
[4] | 傅旖, 马辰莺, 张露, 周菊英.生境分析在恶性肿瘤影像组学中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(5): 292-297. |
[5] | 萨蔷, 徐航程, 王佳玉.乳腺癌免疫治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 227-234. |
[6] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙.肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. |
[7] | 钟楠, 王淡瑜, 周欢欢, 刘宁, 戴纬, 刘黎琼, 郭智.CD30单抗联合PD-1抑制剂治疗复发难治性霍奇金淋巴瘤的疗效与安全性[J]. 国际肿瘤学杂志, 2024, 51(4): 245-248. |
[8] | 钱晓涛, 石子宜, 胡格.Ⅲ~ⅣA期食管鳞状细胞癌根治性放化疗后行免疫检查点抑制剂维持治疗的真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(3): 151-156. |
[9] | 解淑萍, 孙亚红, 汪超.早期肿瘤标志物联合NLR、PLR预测胃癌免疫治疗疗效[J]. 国际肿瘤学杂志, 2024, 51(3): 157-165. |
[10] | 孙国宝, 杨倩, 庄庆春, 高斌斌, 孙晓刚, 宋伟, 沙丹.结直肠癌肝转移组织病理学生长方式研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 114-118. |
[11] | 刘筱迪, 苏剑飞, 张静娴, 卫雪芹, 贾英杰.髓源性抑制细胞在肿瘤血管生成中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(1): 50-54. |
[12] | 顾花艳, 朱腾, 郭贵龙.乳房微生物群与乳腺癌:现状与未来[J]. 国际肿瘤学杂志, 2024, 51(1): 55-58. |
[13] | 陈欣祎, 翁一鸣, 魏家燕, 王劲松, 彭敏.免疫检查点抑制剂在复发或转移性头颈部鳞状细胞癌治疗中的进展[J]. 国际肿瘤学杂志, 2023, 50(9): 553-557. |
[14] | 邓隽军, 赵大勇, 李淼.免疫检查点抑制剂在非小细胞肺癌治疗中的不良反应及危险因素[J]. 国际肿瘤学杂志, 2023, 50(9): 564-568. |
[15] | 刘德宝, 孙子雯, 鲁守堂, 徐海东.ASB6在结直肠癌组织中的表达及临床意义[J]. 国际肿瘤学杂志, 2023, 50(8): 470-474. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||