国际肿瘤学杂志››2022,Vol. 49››Issue (6): 349-352.doi:10.3760/cma.j.cn371439-20220330-00066
收稿日期:
2022-03-30修回日期:
2022-04-25出版日期:
2022-06-08发布日期:
2022-06-30通讯作者:
乌新林 E-mail:wuxinlin@126.基金资助:
Received:
2022-03-30Revised:
2022-04-25Online:
2022-06-08Published:
2022-06-30Contact:
Wu Xinlin E-mail:wuxinlin@126.Supported by:
摘要:
乳酸作为肿瘤微环境中广泛存在的代谢物,主要由进行有氧糖酵解的肿瘤细胞产生。乳酸与肿瘤的发生发展密切相关,其不仅可作为底物为肿瘤细胞供能,还可作为信号分子激活多种通路从而促进肿瘤细胞的侵袭转移、血管生成以及免疫逃逸。深入研究乳酸在肿瘤发生发展中的作用机制及相关治疗进展,有利于寻找治疗肿瘤的药物作用靶点从而改善患者的预后。
张子叔, 乌新林. 肿瘤微环境中乳酸的作用机制及相关治疗[J]. 国际肿瘤学杂志, 2022, 49(6): 349-352.
Zhang Zishu, Wu Xinlin. Mechanism of action of lactic acid in tumor microenvironment and related treatment[J]. Journal of International Oncology, 2022, 49(6): 349-352.
[1] | Martínez-Reyes I, Chandel NS. Cancer metabolism: looking forward[J]. Nat Rev Cancer, 2021, 21(10): 669-680. DOI: 10.1038/s41568-021-00378-6. doi:10.1038/s41568-021-00378-6pmid:34272515 |
[2] | Vaupel P, Multhoff G. Revisiting the warburg effect: historical dogma versus current understanding[J]. J Physiol, 2021, 599(6): 1745-1757. DOI: 10.1113/JP278810. doi:10.1113/JP278810 |
[3] | Martinez-Outschoorn UE, Peiris-Pagés M, Pestell RG, et al. Cancer metabolism: a therapeutic perspective[J]. Nat Rev Clin Oncol, 2017, 14(1): 11-31. DOI: 10.1038/nrclinonc.2016.60. doi:10.1038/nrclinonc.2016.60pmid:27141887 |
[4] | Pérez-Escuredo J, Van Hée VF, Sboarina M, et al. Monocarboxy-late transporters in the brain and in cancer[J]. Biochim Biophys Acta, 2016, 1863(10): 2481-2497. DOI: 10.1016/j.bbamcr.2016.03.013. doi:10.1016/j.bbamcr.2016.03.013pmid:26993058 |
[5] | Payen VL, Mina E, Van Hée VF, et al. Monocarboxylate transpor-ters in cancer[J]. Mol Metab, 2020, 33: 48-66. DOI: 10.1016/j.molmet.2019.07.006. doi:10.1016/j.molmet.2019.07.006 |
[6] | Wang N, Jiang X, Zhang S, et al. Structural basis of human monocarboxylate transporter 1 inhibition by anti-cancer drug candidates[J]. Cell, 2021, 184(2): 370-383. e13. DOI: 10.1016/j.cell.2020.11.043. doi:10.1016/j.cell.2020.11.043pmid:33333023 |
[7] | Faubert B, Li KY, Cai L, et al. Lactate metabolism in human lung tumors[J]. Cell, 2017, 171(2): 358-371. e9. DOI: 10.1016/j.cell.2017.09.019. doi:10.1016/j.cell.2017.09.019 |
[8] | Mantovani A, Marchesi F, Malesci A, et al. Tumour-associated macrophages as treatment targets in oncology[J]. Nat Rev Clin Oncol, 2017, 14(7): 399-416. DOI: 10.1038/nrclinonc.2016.217. doi:10.1038/nrclinonc.2016.217pmid:28117416 |
[9] | Colegio OR, Chu NQ, Szabo AL, et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid[J]. Nature, 2014, 513(7519): 559-563. DOI: 10.1038/nature13490. doi:10.1038/nature13490 |
[10] | Chen P, Zuo H, Xiong H, et al. Gpr132 sensing of lactate medi-ates tumor-macrophage interplay to promote breast cancer meta-stasis[J]. Proc Natl Acad Sci U S A, 2017, 114(3): 580-585. DOI: 10.1073/pnas.1614035114. doi:10.1073/pnas.1614035114 |
[11] | Wei C, Yang C, Wang S, et al. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis[J]. Mol Cancer, 2019, 18(1): 64. DOI: 10.1186/s12943-019-0976-4. doi:10.1186/s12943-019-0976-4 |
[12] | Kalluri R. The biology and function of fibroblasts in cancer[J]. Nat Rev Cancer, 2016, 16(9): 582-598. DOI: 10.1038/nrc.2016.73. doi:10.1038/nrc.2016.73pmid:27550820 |
[13] | Kogure A, Naito Y, Yamamoto Y, et al. Cancer cells with high-metastatic potential promote a glycolytic shift in activated fibroblasts[J]. PLoS One, 2020, 15(6): e0234613. DOI: 10.1371/journal.pone.0234613. doi:10.1371/journal.pone.0234613 |
[14] | Fitzgerald G, Soro-Arnaiz I, De Bock K. The warburg effect in endothelial cells and its potential as an anti-angiogenic target in cancer[J]. Front Cell Dev Biol, 2018, 6: 100. DOI: 10.3389/fcell.2018.00100. doi:10.3389/fcell.2018.00100pmid:30255018 |
[15] | Sun S, Li H, Chen J, et al. Lactic acid: no longer an inert and end-product of glycolysis[J]. Physiology (Bethesda), 2017, 32(6): 453-463. DOI: 10.1152/physiol.00016.2017. doi:10.1152/physiol.00016.2017 |
[16] | Brown TP, Ganapathy V. Lactate/GPR81 signaling and proton motive force in cancer: role in angiogenesis, immune escape, nutrition, and Warburg phenomenon[J]. Pharmacol Ther, 2020, 206: 107451. DOI: 10.1016/j.pharmthera.2019.107451. doi:10.1016/j.pharmthera.2019.107451 |
[17] | Deng F, Zhou R, Lin C, et al. Tumor-secreted dickkopf2 accele-rates aerobic glycolysis and promotes angiogenesis in colorectal cancer[J]. Theranostics, 2019, 9(4): 1001-1014. DOI: 10.7150/thno.30056. doi:10.7150/thno.30056 |
[18] | Yang J, Jiang Y, He R, et al. DKK2 impairs tumor immunity infiltration and correlates with poor prognosis in pancreatic ductal adenocarcinoma[J]. J Immunol Res, 2019, 2019: 8656282. DOI: 10.1155/2019/8656282. doi:10.1155/2019/8656282 |
[19] | Hu J, Wang Z, Chen Z, et al. DKK2 blockage-mediated immunotherapy enhances anti-angiogenic therapy of Kras mutated colorectal cancer[J]. Biomed Pharmacother, 2020, 127: 110229. DOI: 10.1016/j.biopha.2020.110229. doi:10.1016/j.biopha.2020.110229 |
[20] | Hayes C, Donohoe CL, Davern M, et al. The oncogenic and clinical implications of lactate induced immunosuppression in the tumour microenvironment[J]. Cancer Lett, 2021, 500: 75-86. DOI: 10.1016/j.canlet.2020.12.021. doi:10.1016/j.canlet.2020.12.021 |
[21] | Brand A, Singer K, Koehl GE, et al. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells[J]. Cell Metab, 2016, 24(5): 657-671. DOI: 10.1016/j.cmet.2016.08.011. doi:10.1016/j.cmet.2016.08.011 |
[22] | Bae EA, Seo H, Kim IK, et al. Roles of NKT cells in cancer immunotherapy[J]. Arch Pharm Res, 2019, 42(7): 543-548. DOI: 10.1007/s12272-019-01139-8. doi:10.1007/s12272-019-01139-8 |
[23] | de la Cruz-López KG, Castro-Muñoz LJ, Reyes-Hernández DO, et al. Lactate in the regulation of tumor microenvironment and therapeutic approaches[J]. Front Oncol, 2019, 9: 1143. DOI: 10.3389/fonc.2019.01143. doi:10.3389/fonc.2019.01143pmid:31737570 |
[24] | Raychaudhuri D, Bhattacharya R, Sinha BP, et al. Lactate indu-ces pro-tumor reprogramming in intratumoral plasmacytoid dendritic cells[J]. Front Immunol, 2019, 10: 1878. DOI: 10.3389/fimmu.2019.01878. doi:10.3389/fimmu.2019.01878pmid:31440253 |
[25] | Shaul ME, Fridlender ZG. Tumour-associated neutrophils in patients with cancer[J]. Nat Rev Clin Oncol, 2019, 16(10): 601-620. DOI: 10.1038/s41571-019-0222-4. doi:10.1038/s41571-019-0222-4 |
[26] | Wang JX, Choi SYC, Niu X, et al. Lactic acid and an acidic tumor microenvironment suppress anticancer immunity[J]. Int J Mol Sci, 2020, 21(21): 8363. DOI: 10.3390/ijms21218363. doi:10.3390/ijms21218363 |
[27] | Abdel-Wahab AF, Mahmoud W, Al-Harizy RM. Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy[J]. Pharmacol Res, 2019, 150: 104511. DOI: 10.1016/j.phrs.2019.104511. doi:10.1016/j.phrs.2019.104511 |
[28] | Chen X, Hao B, Li D, et al. Melatonin inhibits lung cancer development by reversing the Warburg effect via stimulating the SIRT3/PDH axis[J]. J Pineal Res, 2021, 71(2): e12755. DOI: 10.1111/jpi.12755. doi:10.1111/jpi.12755 |
[29] | Shen S, Yao T, Xu Y, et al. CircECE1 activates energy meta-bolism in osteosarcoma by stabilizing c-Myc[J]. Mol Cancer, 2020, 19(1): 151. DOI: 10.1186/s12943-020-01269-4. doi:10.1186/s12943-020-01269-4 |
[30] | Ippolito L, Morandi A, Giannoni E, et al. Lactate: a metabolic driver in the tumour landscape[J]. Trends Biochem Sci, 2019, 44(2): 153-166. DOI: 10.1016/j.tibs.2018.10.011. doi:S0968-0004(18)30227-5pmid:30473428 |
[1] | 傅旖, 马辰莺, 张露, 周菊英.生境分析在恶性肿瘤影像组学中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(5): 292-297. |
[2] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙.肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. |
[3] | 刘筱迪, 苏剑飞, 张静娴, 卫雪芹, 贾英杰.髓源性抑制细胞在肿瘤血管生成中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(1): 50-54. |
[4] | 顾花艳, 朱腾, 郭贵龙.乳房微生物群与乳腺癌:现状与未来[J]. 国际肿瘤学杂志, 2024, 51(1): 55-58. |
[5] | 李俊, 薛胜, 王伟杰, 陶润, 张家俊.TPX2在肾透明细胞癌中的表达及其临床意义[J]. 国际肿瘤学杂志, 2023, 50(4): 214-219. |
[6] | 许萌, 姜伟, 朱海涛, 曹雄锋.癌相关成纤维细胞在肿瘤放疗抵抗中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(4): 227-230. |
[7] | 丁浩, 应劲涛, 付茂勇.CAR-T在食管鳞状细胞癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(4): 231-235. |
[8] | 曹梦清, 徐志勇, 施毓婷, 王凯.三级淋巴结构在肿瘤免疫微环境调节和抗肿瘤治疗中的作用[J]. 国际肿瘤学杂志, 2023, 50(3): 169-173. |
[9] | 徐良富, 李袁飞.MSS型结直肠癌肿瘤微环境及免疫联合治疗研究进展[J]. 国际肿瘤学杂志, 2023, 50(3): 186-190. |
[10] | 朱易, 陈健.硫化氢在肿瘤发生发展中的作用机制及其供体抗肿瘤作用[J]. 国际肿瘤学杂志, 2023, 50(12): 729-733. |
[11] | 谢露露, 丁江华.免疫治疗在晚期三阴性乳腺癌中的应用进展[J]. 国际肿瘤学杂志, 2023, 50(11): 672-676. |
[12] | 陶红, 殷红, 罗宏, 陶佳瑜.靶向肿瘤相关巨噬细胞增强结直肠癌免疫检查点抑制剂疗效的潜在策略[J]. 国际肿瘤学杂志, 2023, 50(11): 683-687. |
[13] | 马雪艳, 鲁历历, 孙鹏飞.免疫微环境在宫颈癌中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(1): 47-50. |
[14] | 吴嘉钰, 刘加成.孤立性磨玻璃结节样肺腺癌的影像组学研究进展[J]. 国际肿瘤学杂志, 2022, 49(8): 449-452. |
[15] | 吴家宜, 陈柯羽, 邵喜英, 王晓稼.CDK4/6抑制剂通过调控三阴性乳腺癌免疫微环境促进抗肿瘤免疫的机制研究进展[J]. 国际肿瘤学杂志, 2022, 49(6): 362-365. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||