国际肿瘤学杂志››2024,Vol. 51››Issue (10): 639-644.doi:10.3760/cma.j.cn371439-20240407-00107
杜爱超1,2, 程厚翔1,2, 代军强1,2,3, 潘亚文1,2,3()
收稿日期:
2024-04-07修回日期:
2024-06-17出版日期:
2024-10-08发布日期:
2024-12-04通讯作者:
潘亚文 E-mail:pyw@lzu.edu.cn基金资助:
Du Aichao1,2, Cheng Houxiang1,2, Dai Junqiang1,2,3, Pan Yawen1,2,3()
Received:
2024-04-07Revised:
2024-06-17Online:
2024-10-08Published:
2024-12-04Contact:
Pan Yawen E-mail:pyw@lzu.edu.cnSupported by:
摘要:
胶质母细胞瘤(GBM)是中枢神经系统最具威胁的疾病之一,尽管治疗方法不断更新,但患者预后并未得到改善。然而,肿瘤电场治疗(TTField)的引入改变了新诊断和复发性GBM的治疗方式。TTField是一种利用中频低强度交变电场治疗肿瘤的新型无创疗法,对于GBM等中枢神经系统疾病的治疗有重要意义。与传统治疗方式相比,TTField具有较小的不良反应和较好的局部疗效。此外,化疗药物和放疗与TTField的联合应用已被证明具有显著优势,可能成为未来临床治疗的策略之一。然而,尽管TTField在GBM治疗中具有较大潜力,但仍存在一些局限性,包括治疗设备的依赖性、使用过程中的不适感以及部分患者对该治疗的耐受性等问题。因此,需要进一步优化TTField的使用方式,以最大程度地发挥其在GBM患者中的治疗潜力,为患者提供更有效的治疗方案。
杜爱超, 程厚翔, 代军强, 潘亚文. 肿瘤电场治疗在胶质母细胞瘤中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(10): 639-644.
Du Aichao, Cheng Houxiang, Dai Junqiang, Pan Yawen. Advances in the study of the role of tumor treating fields therapy in the treatment of glioblastoma[J]. Journal of International Oncology, 2024, 51(10): 639-644.
[1] | Ostrom QT, Cioffi G, Gittleman H, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012-2016[J].Neuro Oncol,2019,21(Suppl 5): v1-v100. DOI:10.1093/neuonc/noz150. |
[2] | Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the central nervous system: a summary[J].Neuro Oncol,2021,23(8): 1231-1251. DOI:10.1093/neuonc/noab106. |
[3] | 肖楠, 孙鹏飞. 氧化应激在胶质瘤放化疗敏感性中的研究进展[J].国际肿瘤学杂志,2022,49(6): 357-361. DOI:10.3760/cma.j.cn371439-20220309-00068. |
[4] | Xu C, Xiao M, Li X, et al. Origin, activation, and targeted therapy of glioma-associated macrophages[J].Front Immunol,2022,13: 974996. DOI:10.3389/fimmu.2022.974996. |
[5] | Rominiyi O, Vanderlinden A, Clenton SJ, et al. Tumour treating fields therapy for glioblastoma: current advances and future directions[J].Br J Cancer,2021,124(4): 697-709. DOI:10.1038/s41416-020-01136-5. |
[6] | 连海伟, 杨烁锐, 刘仁忠. 金松双黄酮联合CX-4945通过Notch1通路调控胶质母细胞瘤细胞增殖与凋亡的机制研究[J].国际肿瘤学杂志,2022,49(6): 321-326. DOI:10.3760/cma.j.cn371439-20220118-00061. |
[7] | Velásquez C, Mansouri S, Mora C, et al. Molecular and clinical insights into the invasive capacity of glioblastoma cells[J].J Oncol,2019,2019: 1740763. DOI:10.1155/2019/1740763. |
[8] | Shams S, Patel CB. Anti-cancer mechanisms of action of therapeutic alternating electric fields (tumor treating fields [TTFields])[J].J Mol Cell Biol,2022,14(8): mjac047. DOI:10.1093/jmcb/mjac047. |
[9] | Barsheshet Y, Voloshin T, Brant B, et al. Tumor treating fields (TTFields) concomitant with immune checkpoint inhibitors are therapeutically effective in non-small cell lung cancer (NSCLC) in vivo model[J].Int J Mol Sci,2022,23(22): 14073. DOI:10.3390/ijms232214073. |
[10] | Ceresoli GL, Aerts JG, Dziadziuszko R, et al. Tumour treating fields in combination with pemetrexed and cisplatin or carboplatin as first-line treatment for unresectable malignant pleural mesothelioma (STELLAR): a multicentre, single-arm phase 2 trial[J].Lancet Oncol,2019,20(12): 1702-1709. DOI:10.1016/s1470-2045(19)30532-7. pmid:31628016 |
[11] | Guo X, Yang X, Wu J, et al. Tumor-treating fields in glioblastomas: past, present, and future[J].Cancers (Basel),2022,14(15): 3669. DOI:10.3390/cancers14153669. |
[12] | Hadjipanayis CG, Stummer W. 5-ALA and FDA approval for glioma surgery[J].J Neurooncol,2019,141(3): 479-486. DOI:10.1007/s11060-019-03098-y. |
[13] | Moser JC, Salvador E, Deniz K, et al. The mechanisms of action of tumor treating fields[J].Cancer Res,2022,82(20): 3650-3658. DOI:10.1158/0008-5472.Can-22-0887. pmid:35839284 |
[14] | Giladi M, Schneiderman RS, Voloshin T, et al. Mitotic spindle disruption by alternating electric fields leads to improper chromosome segregation and mitotic catastrophe in cancer cells[J].Sci Rep,2015,5: 18046. DOI:10.1038/srep18046. pmid:26658786 |
[15] | Hong P, Kudulaiti N, Wu S, et al. Tumor treating fields: a comprehensive overview of the underlying molecular mechanism[J].Expert Rev Mol Diagn,2022,22(1): 19-28. DOI:10.1080/14737159.2022.2017283. |
[16] | Tanzhu G, Chen L, Xiao G, et al. The schemes, mechanisms and molecular pathway changes of tumor treating fields (TTFields) alone or in combination with radiotherapy and chemotherapy[J].Cell Death Discov,2022,8(1): 416. DOI:10.1038/s41420-022-01206-y. pmid:36220835 |
[17] | Kim EH, Jo Y, Sai S, et al. Tumor-treating fields induce autophagy by blocking the Akt2/miR29b axis in glioblastoma cells[J].Oncogene,2019,38(39): 6630-6646. DOI:10.1038/s41388-019-0882-7. pmid:31375748 |
[18] | Belyaeva E, Kharwar RK, Ulasov IV, et al. Isoforms of autophagy-related proteins: role in glioma progression and therapy resistance[J].Mol Cell Biochem,2022,477(2): 593-604. DOI:10.1007/s11010-021-04308-w. |
[19] | Xu S, Luo C, Chen D, et al. Whole transcriptome and proteome analyses identify potential targets and mechanisms underlying tumor treating fields against glioblastoma[J].Cell Death Dis,2022,13(8): 721. DOI:10.1038/s41419-022-05127-7. pmid:35982032 |
[20] | Aguilar AA, Ho MC, Chang E, et al. Permeabilizing cell membranes with electric fields[J].Cancers (Basel),2021,13(9): 2283. DOI:10.3390/cancers13092283. |
[21] | Chang E, Patel CB, Pohling C, et al. Tumor treating fields increases membrane permeability in glioblastoma cells[J].Cell Death Discovery,2018,4(1): 113. DOI:10.1038/s41420-018-0130-x. |
[22] | Salvador E, Kessler AF, Domröse D, et al. Tumor treating fields (TTFields) reversibly permeabilize the blood-brain barrier in vitro and in vivo[J].Biomolecules,2022,12(10): 1348. DOI:10.3390/biom12101348. |
[23] | Li X, Yang F, Rubinsky B. A theoretical study on the biophysical mechanisms by which tumor treating fields affect tumor cells during mitosis[J].IEEE Trans Biomed Eng,2020,67(9): 2594-2602. DOI:10.1109/tbme.2020.2965883. pmid:31940516 |
[24] | Lee WS, Seo SJ, Chung HK, et al. Tumor-treating fields as a proton beam-sensitizer for glioblastoma therapy[J].Am J Cancer Res,2021,11(9): 4582-4594. pmid:34659907 |
[25] | Voloshin T, Schneiderman RS, Volodin A, et al. Tumor treating fields (TTFields) hinder cancer cell motility through regulation of microtubule and acting dynamics[J].Cancers (Basel),2020,12(10): 3016. DOI:10.3390/cancers12103016. |
[26] | Prager BC, Bhargava S, Mahadev V, et al. Glioblastoma stem cells: driving resilience through chaos[J].Trends Cancer,2020,6(3): 223-235. DOI:10.1016/j.trecan.2020.01.009. pmid:32101725 |
[27] | Sampson JH, Gunn MD, Fecci PE, et al. Brain immunology and immunotherapy in brain tumours[J].Nat Rev Cancer,2020,20(1): 12-25. DOI:10.1038/s41568-019-0224-7. pmid:31806885 |
[28] | Voloshin T, Kaynan N, Davidi S, et al. Tumor-treating fields (TTFields) induce immunogenic cell death resulting in enhanced antitumor efficacy when combined with anti-PD-1 therapy[J].Cancer Immunol Immunother,2020,69(7): 1191-1204. DOI:10.1007/s00262-020-02534-7. pmid:32144446 |
[29] | Chen DJ, Le SB, Hutchinson TE, et al. Tumor treating fields dually activate STING and AIM2 inflammasomes to induce adjuvant immunity in glioblastoma[J].J Clin Invest,2022,132(8): e149258. DOI:10.1172/jci149258. |
[30] | Diamant G, Simchony Goldman H, Gasri Plotnitsky L, et al. T cells retain pivotal antitumoral functions under tumor-treating electric fields[J].J Immunol,2021,207(2): 709-719. DOI:10.4049/jimmunol.2100100. pmid:34215656 |
[31] | Karanam NK, Ding LH, Aroumougame A, et al. Tumor treating fields cause replication stress and interfere with DNA replication fork maintenance: implications for cancer therapy[J].Transl Res,2020,217: 33-46. DOI:10.1016/j.trsl.2019.10.003. pmid:31707040 |
[32] | Kim EH, Kim YH, Song HS, et al. Biological effect of an alter-nating electric field on cell proliferation and synergistic antimitotic effect in combination with ionizing radiation[J].Oncotarget,2016,7(38): 62267-62279. DOI:10.18632/oncotarget.11407. |
[33] | Giladi M, Munster M, Schneiderman RS, et al. Tumor treating fields (TTFields) delay DNA damage repair following radiation treatment of glioma cells[J].Radiat Oncol,2017,12(1): 206. DOI:10.1186/s13014-017-0941-6. pmid:29284495 |
[34] | Stupp R, Taillibert S, Kanner A, et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial[J].JAMA,2017,318(23): 2306-2316. DOI:10.1001/jama.2017.18718. pmid:29260225 |
[35] | Guberina N, Pöttgen C, Kebir S, et al. Combined radiotherapy and concurrent tumor treating fields (TTFields) for glioblastoma: dosimetric consequences on non-coplanar IMRT as initial results from a phase Ⅰ trial[J].Radiat Oncol,2020,15(1): 83. DOI:10.1186/s13014-020-01521-7. pmid:32307022 |
[36] | Jo Y, Kim EH, Sai S, et al. Functional biological activity of sorafenib as a tumor-treating field sensitizer for glioblastoma therapy[J].Int J Mol Sci,2018,19(11): 3684. DOI:10.3390/ijms19113684. |
[37] | Kim JY, Jo Y, Oh HK, et al. Sorafenib increases tumor treating fields-induced cell death in glioblastoma by inhibiting STAT3[J].Am J Cancer Res,2020,10(10): 3475-3486. |
[38] | Dubinski D, Hattingen E, Senft C, et al. Controversial roles for dexamethasone in glioblastoma—opportunities for novel vascular targeting therapies[J].J Cereb Blood Flow Metab,2019,39(8): 1460-1468. DOI:10.1177/0271678x19859847. |
[39] | Iorgulescu JB, Gokhale PC, Speranza MC, et al. Concurrent dexamethasone limits the clinical benefit of immune checkpoint blockade in glioblastoma[J].Clin Cancer Res,2021,27(1): 276-287. DOI:10.1158/1078-0432.Ccr-20-2291. pmid:33239433 |
[40] | Linder B, Schiesl A, Voss M, et al. Dexamethasone treatment limits efficacy of radiation, but does not interfere with glioma cell death induced by tumor treating fields[J].Front Oncol,2021,11: 715031. DOI:10.3389/fonc.2021.715031. |
[41] | Shi WY, Blumenthal DT, Oberheim Bush NA, et al. Global post-marketing safety surveillance of tumor treating fields (TTFields) in patients with high-grade glioma in clinical practice[J].J Neurooncol,2020,148(3): 489-500. DOI:10.1007/s11060-020-03540-6. |
[42] | Anadkat MJ, Lacouture MR, Friedman A, et al. Expert guidance on prophylaxis and treatment of dermatologic adverse events with tumor treating fields (TTFields) therapy in the thoracic region[J].Front Oncol,2023,12: 975473. DOI:10.3389/fonc.2022.975473. |
[43] | Shah PP, White T, Khalafallah AM, et al. A systematic review of tumor treating fields therapy for high-grade gliomas[J].J Neurooncol,2020,148(3): 433-443. DOI:10.1007/s11060-020-03563-z. |
[1] | 刘萍萍, 何学芳, 张翼, 杨旭, 张珊珊, 季一飞.原发性脑胶质瘤患者术后复发危险因素及预测模型构建[J]. 国际肿瘤学杂志, 2024, 51(4): 193-197. |
[2] | 王军, 贾秀红.TGF-β/Smad信号通路与急性白血病[J]. 国际肿瘤学杂志, 2023, 50(8): 498-502. |
[3] | 连海伟, 杨烁锐, 刘仁忠.金松双黄酮联合CX-4945通过Notch1通路调控胶质母细胞瘤细胞增殖与凋亡的机制研究[J]. 国际肿瘤学杂志, 2022, 49(6): 321-326. |
[4] | 王丽薇, 梁洪生, 杜松林, 陈志豪, 王晴, 高爱丽.阿维菌素类药物在抗肿瘤方面的研究进展[J]. 国际肿瘤学杂志, 2022, 49(6): 353-356. |
[5] | 肖楠, 孙鹏飞.氧化应激在胶质瘤放化疗敏感性中的研究进展[J]. 国际肿瘤学杂志, 2022, 49(6): 357-361. |
[6] | 庞静丹, 杜瀛瀛, 笪洁.抗体药物偶联物治疗晚期实体瘤的不良反应和处理措施[J]. 国际肿瘤学杂志, 2022, 49(4): 220-224. |
[7] | 曾艳, 罗盼, 王子琪, 吴伟莉.药物在头颈部肿瘤治疗中引起铁死亡的作用机制[J]. 国际肿瘤学杂志, 2022, 49(3): 173-176. |
[8] | 朱一硕, 崔玉洁, 刘崎, 李军, 范月超.脑胶质瘤患者术后早期复发危险因素分析及预测模型构建[J]. 国际肿瘤学杂志, 2022, 49(2): 79-83. |
[9] | 孔春禹, 孙鹏飞.SLC7A11与胶质瘤[J]. 国际肿瘤学杂志, 2022, 49(10): 604-607. |
[10] | 杨驰, 罗长江.结直肠癌炎症、免疫及胆固醇代谢背景研究进展[J]. 国际肿瘤学杂志, 2022, 49(10): 630-634. |
[11] | 郭世豪, 任叶青, 郭庚.脑胶质瘤血管生成拟态分子机制[J]. 国际肿瘤学杂志, 2021, 48(6): 362-365. |
[12] | 王宪伟, 史美燕, 王凤芹, 齐福, 王朝喆, 周飞.TSA上调miR-4298靶向抑制PADI4表达在诱导U251细胞凋亡中的作用[J]. 国际肿瘤学杂志, 2021, 48(4): 193-199. |
[13] | 魏永健, 胡进静, 李汛.CDCA8与肿瘤发生发展及干细胞干性维持的关系[J]. 国际肿瘤学杂志, 2021, 48(4): 216-219. |
[14] | 孙彦琪, 任叶青, 郭庚.干扰素及其相关信号通路抑制脑胶质瘤侵袭的机制[J]. 国际肿瘤学杂志, 2021, 48(3): 172-175. |
[15] | 张雯, 胡伟国, 宋启斌.3D-ASL与DCE-MRI在脑胶质瘤复发与放射性脑坏死鉴别诊断中的价值[J]. 国际肿瘤学杂志, 2021, 48(10): 631-634. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||