betway必威登陆网址 (betway.com )学报››2022,Vol. 43››Issue (2): 142-147.DOI:10.3969/j.issn.2097-0005.2022.02.013
收稿日期:
2021-09-21出版日期:
2022-02-25发布日期:
2022-03-18通讯作者:
薛凌宇作者简介:
王霞,硕士研究生,研究方向:肾脏病的诊治,E-mail:15550924923@163.com。Received:
2021-09-21Online:
2022-02-25Published:
2022-03-18Contact:
Lingyu XUE摘要:
肾性贫血是慢性肾脏病患者常见并发症,可加速疾病进展、增加终末期肾脏病风险、提高患者死亡率。普遍认为肾性贫血的发生主要与促红细胞生成素(EPO)不足、铁缺乏及代谢紊乱相关,本文分析缺氧诱导因子通路、铁调素-膜铁转运蛋白轴、炎症、甲状旁腺激素、成纤维细胞因子23、B型利钠肽等因素在EPO的生成、铁代谢中的作用,从而对肾性贫血发病机制的最新研究进展进行综述。
王霞, 薛凌宇. 肾性贫血发病机制研究进展[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(2): 142-147.
Xia WANG, Lingyu XUE. Advances in the pathogenesis of renal anemia[J]. Journal of Shandong First Medical Unversity & Shandong Academy of Medical Sciences, 2022, 43(2): 142-147.
1 | 中华医学会肾脏病学分会肾性贫血诊断和治疗共识专家组. 肾性贫血诊断与治疗中国专家共识(2018修订版)[J]. 中华肾脏病杂志, 2018, 34(11): 860. |
2 | St Peter WL, Guo HF, Kabadi S, et al. Prevalence, treatment patterns, and healthcare resource utilization in Medicare and commercially insured non-dialysis-dependent chronic kidney disease patients with and without anemia in the United States[J]. BMC Nephrol, 2018, 19(1): 67. |
3 | Zuo L, Wang M, Hou FF, et al. Anemia management in the China dialysis outcomes and practice patterns study[J]. Blood Purif, 2016, 42(1): 33. |
4 | Li ZL, Tu Y, Liu BC. Treatment of renal anemia with roxadustat: advantages and achievement[J]. Kidney Dis(Basel), 2020, 6(2): 65. |
5 | 张泽宇, 尹良红. 缺氧诱导因子调节铁调素在肾性贫血中的研究进展[J]. 中国病理生理杂志, 2021, 37(3): 558. |
6 | Joharapurkar AA, Pandya VB, Patel VJ, et al. Prolyl hydroxylase inhibitors: a breakthrough in the therapy of anemia associated with chronic diseases[J]. J Med Chem, 2018, 61(16): 6964. |
7 | Gupta N, Wish JB. Hypoxia-inducible factor prolyl hydroxylase inhibitors: a potential new treatment for anemia in patients with CKD[J]. Am J Kidney Dis, 2017, 69(6): 815. |
8 | Gupta N, Wish JB. Hypoxia-inducible factor prolyl hydroxylase inhibitors: a potential new treatment for anemia in patients with CKD[J]. Am J Kidney Dis, 2017, 69(6): 815. |
9 | Locatelli F, Fishbane S, Block GA, et al. Targeting hypoxia-inducible factors for the treatment of anemia in chronic kidney disease patients[J]. Am J Nephrol, 2017, 45(3): 187. |
10 | Li L, Nakano D, Zhang AQ, et al. Effects of post-renal anemia treatment with the HIF-PHD inhibitor molidustat on adenine-induced renal anemia and kidney disease in mice[J]. J Pharmacol Sci, 2020, 144(4): 229. |
11 | Sakashita M, Tanaka T, Nangaku M. Hypoxia-inducible factor-prolyl hydroxylase domain inhibitors to treat anemia in chronic kidney disease[J]. Contrib Nephrol, 2019, 198: 112. |
12 | Ogawa C, Tsuchiya K, Maeda K, et al. Renal anemia and iron metabolism[J]. Contrib Nephrol, 2018, 195: 62. |
13 | Gafter-Gvili A, Schechter A, Rozen-Zvi B. Iron deficiency anemia in chronic kidney disease[J]. Acta Haematol, 2019, 142(1): 44. |
14 | Niihata K, Tomosugi N, Uehata T, et al. Serum hepcidin-25 levels predict the progression of renal anemia in patients with non-dialysis chronic kidney disease[J]. Nephrol Dial Transplant, 2012, 27(12): 4378. |
15 | Drakesmith H, Nemeth E, Ganz T. Ironing out ferroportin[J]. Cell Metab, 2015, 22(5): 777. |
16 | Vela D. Systemic and local hepcidin as emerging and important peptides in renal homeostasis and pathology[J]. Biofactors, 2019, 45(2): 118. |
17 | Malyszko J, Malyszko JS, Matuszkiewicz-Rowinska J. Hepcidin as a therapeutic target for anemia and inflammation associated with chronic kidney disease[J]. Expert Opin Ther Targets, 2019, 23(5):407. |
18 | Zhang DL, Ghosh MC, Ollivierre H, et al. Ferroportin deficiency in erythroid cells causes serum iron deficiency and promotes hemolysis due to oxidative stress[J]. Blood, 2018, 132(19): 2078. |
19 | Billesbølle CB, Azumaya CM, Kretsch RC, et al. Structure of hepcidin-bound ferroportin reveals iron homeostatic mechanisms[J]. Nature, 2020, 586(7831): 807. |
20 | Ginzburg YZ. Hepcidin-ferroportin axis in health and disease[J]. Vitam Horm, 2019, 110: 17. |
21 | Yan ZP, Xu GS. A novel choice to correct inflammation-induced anemia in CKD: oral hypoxia-inducible factor prolyl hydroxylase inhibitor roxadustat[J]. Front Med(Lausanne), 2020, 7: 393. |
22 | Akchurin O, Patino E, Dalal V, et al. Interleukin-6 contributes to the development of anemia in juvenile CKD[J]. Kidney Int Rep, 2019, 4(3): 470. |
23 | Bamgbola OF. Pattern of resistance to erythropoietin-stimulating agents in chronic kidney disease[J]. Kidney Int, 2011, 80(5): 464. |
24 | Ganz T. Iron and infection[J]. Int J Hematol, 2018, 107(1): 7. |
25 | Santos EJF, Hortegal EV, Serra HO, et al. Epoetin alfa resistance in hemodialysis patients with chronic kidney disease: a longitudinal study[J]. Braz J Med Biol Res, 2018, 51(7): e7288. |
26 | Khalil SKM, Amer HA, El Behairy AM, et al. Oxidative stress during erythropoietin hyporesponsiveness anemia at end stage renal disease: molecular and biochemical studies[J]. J Adv Res, 2016, 7(3): 348. |
27 | Katsarou A, Pantopoulos K. Basics and principles of cellular and systemic iron homeostasis[J]. Mol Aspects Med, 2020, 75: 100866. |
28 | Chang JS, Li YL, Lu CH, et al. Interleukin-10 as a potential regulator of hepcidin homeostasis in overweight and obese children: a cross-sectional study in Taiwan[J]. Nutrition, 2014, 30(10): 1165. |
29 | Frýdlová J, Přikryl P, Truksa J, et al. Effect of erythropoietin, iron deficiency and iron overload on liver matriptase-2 (TMPRSS6) protein content in mice and rats[J]. Plos One, 2016, 11(2): e0148540. |
30 | Besson-Fournier C, Latour C, Kautz L, et al. Induction of activin B by inflammatory stimuli up-regulates expression of the iron-regulatory peptide hepcidin through Smad1/5/8 signaling[J]. Blood, 2012, 120(2): 431. |
31 | Mizobuchi M, Ogata H, Koiwa F. Secondary hyperparathyroidism: pathogenesis and latest treatment[J]. Ther Apher Dial, 2019, 23(4): 309. |
32 | Chen C, Wu H, Zhong L, et al. Impacts of parathyroidectomy on renal anemia and nutritional status of hemodialysis patients with secondary hyperparathyroidism[J]. Int J Clin Exp Med, 2015, 8(6): 9830. |
33 | Tanaka M, Komaba H, Fukagawa M. Emerging association between parathyroid hormone and anemia in hemodialysis patients[J]. Ther Apher Dial, 2018, 22(3): 242. |
34 | Tsai MH, Leu JG, Fang YW, et al. High fibroblast growth factor 23 levels associated with low hemoglobin levels in patients with chronic kidney disease stages 3 and 4[J]. Medicine(Baltimore), 2016, 95(11): e3049. |
35 | Agoro R, Montagna A, Goetz R, et al. Inhibition of fibroblast growth factor 23 (FGF23) signaling rescues renal anemia[J]. FASEB J, 2018, 32(7): 3752. |
36 | Mehta R, Cai X, Hodakowski A, et al. Fibroblast growth factor 23 and anemia in the chronic renal insufficiency cohort study[J]. Clin J Am Soc Nephrol, 2017, 12(11): 1795. |
37 | Singh S, Grabner A, Yanucil C, et al. Fibroblast growth factor 23 directly targets hepatocytes to promote inflammation in chronic kidney disease[J]. Kidney Int, 2016, 90(5): 985. |
38 | Okamoto R, Ali Y, Hashizume R, et al. BNP as a major player in the heart-kidney connection[J]. Int J Mol Sci, 2019, 20(14): 3581. |
39 | Cao ZP, Jia YQ, Zhu BL. BNP and NT-proBNP as diagnostic biomarkers for cardiac dysfunction in both clinical and forensic medicine[J]. Int J Mol Sci, 2019, 20(8): 1820. |
40 | Wong PCY, Guo J, Zhang AD. The renal and cardiovascular effects of natriuretic peptides[J]. Adv Physiol Educ, 2017, 41(2): 179. |
41 | Haapio M, Ronco C. BNP and a renal patient: emphasis on the unique characteristics of B-type natriuretic peptide in end-stage kidney disease[J]. Contrib Nephrol, 2008, 161: 68. |
42 | Otaki Y, Watanabe T, Sato N, et al. Brain natriuretic peptide (BNP) and N-terminal-proBNP in cardio-renal anemia syndrome- difference in prognostic ability[J]. Circ Rep, 2019, 1(2): 71. |
43 | Tirmenstajn-Jankovic B, Dimkovic N, Perunicic-Pekovic G, et al. Anemia is independently associated with NT-proBNP levels in asymptomatic predialysis patients with chronic kidney disease[J]. Hippokratia, 2013, 17(4): 307. |
44 | Sabah ZU, Aziz S, Wani JI, et al. The association of anemia as a risk of heart failure[J]. J Family Med Prim Care, 2020, 9(2): 839. |
[1] | 张含兵, 郭传超, 张冉, 马晓, 王萍, 朱婷婷, 段鲁勤.重组人脑利钠肽治疗高龄心力衰竭患者的有效性和安全性[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(5): 361-365. |
[2] | 冯桂菊, 张红, 王守燕, 郭依, 沈鑫, 钟霞.HIF-1α通过激活Notch通路缓解活性氧诱导的心肌细胞凋亡[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(4): 273-277. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||