betway必威登陆网址 (betway.com )学报››2022,Vol. 43››Issue (3): 3-3.DOI:10.3969/j.issn.2097-0005.2022.03.016
• 综述 •下一篇
王宜君1,2(), 唐样1,2, 江益凡1,2, 耿志军1, 宋雪1(
)
收稿日期:
2021-09-18出版日期:
2022-03-25发布日期:
2022-04-11通讯作者:
宋雪作者简介:
王宜君,本科,E-mail:wyj18056698779@163.com。。Yijun WANG1,2(), Yang TANG1,2, Yifan JIANG1,2, Zhijun GENG1, Xue SONG1(
)
Received:
2021-09-18Online:
2022-03-25Published:
2022-04-11Contact:
Xue SONG摘要:
炎症性肠病(inflammatory bowel disease, IBD)是一种包括溃疡性结肠炎和克罗恩病在内的肠道炎症性疾病,病因目前尚不明确。研究表明,信号通路的激活、免疫失调、菌群紊乱等多种因素会导致IBD进展,其中RIP激酶家族通过影响细胞凋亡和坏死、激活以及参与信号通路、维持免疫应答等途径在IBD的发病机制中发挥重要作用。本文概述了RIP激酶家族与IBD的最新联系,为IBD的机制研究和临床诊治提供更多思路。
王宜君, 唐样, 江益凡, 耿志军, 宋雪. RIP激酶家族影响炎症性肠病机制的研究进展[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(3): 3-3.
Yijun WANG, Yang TANG, Yifan JIANG, Zhijun GENG, Xue SONG. The possible mechanism and influence of RIP kinase family on inflammatory bowel disease[J]. Journal of Shandong First Medical Unversity & Shandong Academy of Medical Sciences, 2022, 43(3): 3-3.
1 | De Souza HS, Fiocchi C. Immunopathogenesis of IBD: current state of the art[J]. Nat Rev Gastroenterol Hepatol, 2016, 13(1): 13. |
2 | Zhang DW, Lin J, Han JH. Receptor-interacting protein (RIP) kinase family[J]. Cell Mol Immunol, 2010, 7(4): 243. |
3 | Ananthakrishnan AN, Bernstein CN, Iliopoulos D, et al. Environmental triggers in IBD: a review of progress and evidence[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(1): 39. |
4 | Garcia-Carbonell R, Yao SJ, Das S, et al. Dysregulation of intestinal epithelial cell RIPK pathways promotes chronic inflammation in the IBD gut[J]. Front Immunol, 2019, 10: 1094. |
5 | Lee TH, Shank J, Cusson N, et al. The kinase activity of Rip1 is not required for tumor necrosis factor-alpha-induced IkappaB kinase or p38 MAP kinase activation or for the ubiquitination of rip1 by Traf2[J]. J Biol Chem, 2004, 279(32): 33185. |
6 | Groschwitz KR, Hogan SP. Intestinal barrier function: molecular regulation and disease pathogenesis[J]. J Allergy Clin Immunol, 2009, 124(1): 3. |
7 | Tao PF, Sun JQ, Wu ZM, et al. A dominant autoinflammatory disease caused by non-cleavable variants of RIPK1[J]. Nature, 2020, 577(7788): 109. |
8 | Sun XQ, Yin JP, Starovasnik MA, et al. Identification of a novel homotypic interaction motif required for the phosphorylation of receptor-interacting protein (RIP) by RIP3[J]. J Biol Chem, 2002, 277(11): 9505. |
9 | Li Q, Lu Q, Hwang JY, et al. IKK1-deficient mice exhibit abnormal development of skin and skeleton[J]. Genes Dev, 1999, 13(10): 1322. |
10 | Christofferson DE, Yuan JY. Necroptosis as an alternative form of programmed cell death[J]. Curr Opin Cell Biol, 2010, 22(2): 263. |
11 | Polykratis A, Hermance N, Zelic M, et al. Cutting edge: RIPK1 Kinase inactive mice are viable and protected from TNF-induced necroptosisin vivo[J]. J Immunol, 2014, 193(4): 1539. |
12 | Ingraham CR, Kinoshita A, Kondo S, et al. Abnormal skin, limb and craniofacial morphogenesis in mice deficient for interferon regulatory factor 6 (Irf6)[J]. Nat Genet, 2006, 38(11): 1335. |
13 | Kajino-Sakamoto R, Inagaki M, Lippert E, et al. Enterocyte-derived TAK1 signaling prevents epithelium apoptosis and the development of ileitis and colitis[J]. J Immunol, 2008, 181(2): 1143. |
14 | Hugot JP, Chamaillard M, Zouali H, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease[J]. Nature, 2001, 411(6837): 599. |
15 | He SD, Wang L, Miao L, et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha[J]. Cell, 2009, 137(6): 1100. |
16 | Caruso R, Warner N, Inohara N, et al. NOD1 and NOD2: signaling, host defense, and inflammatory disease[J]. Immunity, 2014, 41(6): 898. |
17 | Homer CR, Kabi A, Marina-García N, et al. A dual role for receptor-interacting protein kinase 2 (RIP2) kinase activity in nucleotide-binding oligomerization domain 2 (NOD2)-dependent autophagy[J]. J Biol Chem, 2012, 287(30): 25565. |
18 | Jun JC, Cominelli F, Abbott DW. RIP2 activity in inflammatory disease and implications for novel therapeutics[J]. J Leukoc Biol, 2013, 94(5): 927. |
19 | Inohara N, Nuñez G. NODs: intracellular proteins involved in inflammation and apoptosis[J]. Nat Rev Immunol, 2003, 3(5): 371. |
20 | Palomino-Morales RJ, Oliver J, Gómez-García M, et al. Association of ATG16L1 and IRGM genes polymorphisms with inflammatory bowel disease: a meta-analysis approach[J]. Genes Immun, 2009, 10(4): 356. |
21 | Chin AI, Dempsey PW, Bruhn K, et al. Involvement of receptor-interacting protein 2 in innate and adaptive immune responses[J]. Nature, 2002, 416(6877): 190. |
22 | Fiil BK, Damgaard RB, Wagner SA, et al. OTULIN restricts Met1-linked ubiquitination to control innate immune signaling[J]. Mol Cell, 2013, 50(6): 818. |
23 | Tigno-Aranjuez JT, Benderitter P, Rombouts F, et al.In vivoinhibition of RIPK2 kinase alleviates inflammatory disease[J]. J Biol Chem, 2014, 289(43): 29651. |
24 | Seyedian SS, Nokhostin F, Malamir MD. A review of the diagnosis, prevention, and treatment methods of inflammatory bowel disease[J]. J Med Life, 2019, 12(2): 113. |
25 | Weinlich R, Oberst A, Beere HM, et al. Necroptosis in development, inflammation and disease[J]. Nat Rev Mol Cell Biol, 2017, 18(2): 127. |
26 | Wang HY, Sun LM, Su LJ, et al. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3[J]. Mol Cell, 2014, 54(1): 133. |
27 | Degterev A, Huang ZH, Boyce M, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury[J]. Nat Chem Biol, 2005, 1(2): 112. |
28 | Harris PA, Berger SB, Jeong JU, et al. Discovery of a first-in-class receptor interacting protein 1 (RIP1) kinase specific clinical candidate (GSK2982772) for the treatment of inflammatory diseases[J]. J Med Chem, 2017, 60(4): 1247. |
29 | Patterson AM, Watson AJM. Deciphering the complex signaling systems that regulate intestinal epithelial cell death processes and shedding[J]. Front Immunol, 2017, 8: 841. |
30 | Zihni C, Mills C, Matter K, et al. Tight junctions: from simple barriers to multifunctional molecular gates[J]. Nat Rev Mol Cell Biol, 2016, 17(9): 564. |
31 | Kwa MQ, Huynh J, Aw J, et al. Receptor-interacting protein kinase 4 and interferon regulatory factor 6 function as a signaling axis to regulate keratinocyte differentiation[J]. J Biol Chem, 2014, 289(45): 31077. |
32 | Oberbeck N, Pham VC, Webster JD, et al. The RIPK4-IRF6 signalling axis safeguards epidermal differentiation and barrier function[J]. Nature, 2019, 574(7777): 249. |
33 | Holland P, Willis C, Kanaly S, et al. RIP4 is an ankyrin repeat-containing kinase essential for keratinocyte differentiation[J]. Curr Biol, 2002, 12(16): 1424. |
34 | Mitchell K, O'Sullivan J, Missero C, et al. Exome sequence identifies RIPK4 as the Bartsocas-Papas syndrome locus[J]. Am J Hum Genet, 2012, 90(1): 69. |
35 | De Groote P, Tran HT, Fransen M, et al. A novel RIPK4-IRF6 connection is required to prevent epithelial fusions characteristic for popliteal pterygium syndromes[J]. Cell Death Differ, 2015, 22(6): 1012. |
36 | Hu Y, Baud V, Delhase M, et al. Abnormal morphogenesis but intact IKK activation in mice lacking the IKKalpha subunit of IkappaB kinase[J]. Science, 1999, 284(5412): 316. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||