betway必威登陆网址 (betway.com )学报››2023,Vol. 44››Issue (4): 304-312.DOI:10.3969/j.issn.2097-0005.2023.04.014
收稿日期:
2022-11-06出版日期:
2023-04-25发布日期:
2023-05-15通讯作者:
毕晓磊作者简介:
周谦,硕士研究生,研究方向:冠状动脉粥样硬化,E-mail:sddyykdxzhouqian@163.com。基金资助:
Qian ZHOU1(), Yibing SHAO2, Zhaozhuo NIU2, Xiaolei BI2(
)
Received:
2022-11-06Online:
2023-04-25Published:
2023-05-15Contact:
Xiaolei BI摘要:
冠状动脉周围脂肪(pericoronary adipose tissue,PCAT)是心外膜脂肪的一部分,毗邻冠状动脉,PCAT与冠状动脉及周围的心肌之间缺乏筋膜层的间隔,共享相同的微循环,因此PCAT据其特殊的位置在冠状动脉粥样硬化的病理生理过程中扮演着尤为重要的角色。研究表明,PCAT和冠状动脉之间的信号传导是双向的,PCAT释放一组维持血管稳态的脂肪因子和细胞因子,这些因子的异常分泌可能会促进炎症和血管生成,进而干预冠状动脉粥样硬化的进展。本综述将重点介绍PCAT调节冠状动脉粥样硬化发展过程中的作用及相关的研究进展。
周谦, 邵一兵, 牛兆倬, 毕晓磊. 冠状动脉周围脂肪与冠脉动脉粥样硬化[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(4): 304-312.
Qian ZHOU, Yibing SHAO, Zhaozhuo NIU, Xiaolei BI. Pericoronary adipose tissue and coronary atherosclerosis[J]. Journal of Shandong First Medical Unversity & Shandong Academy of Medical Sciences, 2023, 44(4): 304-312.
1 | Koenen M, Hill MA, Cohen P, et al. Obesity, adipose tissue and vascular dysfunction[J]. Circ Res, 2021, 128(7): 951. |
2 | Powell-Wiley TM, Poirier P, Burke LE, et al. Obesity and cardiovascular disease: a scientific statement from the American heart association[J]. Circulation, 2021, 143(21): e984. |
3 | Bermúdez V, Durán P, Rojas E, et al. The sick adipose tissue: new insights into defective signaling and crosstalk with the myocardium[J]. Front Endocrinol (Lausanne), 2021, 12: 735070. |
4 | Giroud M, Jodeleit H, Prentice KJ, et al. Adipocyte function and the development of cardiometabolic disease[J]. J Physiol, 2022, 600(5): 1189. |
5 | Fisser C, Colling S, Debl K, et al. The impact of epicardial adipose tissue in patients with acute myocardial infarction[J]. Clin Res Cardiol, 2021, 110(10): 1637. |
6 | Tanaka K, Fukuda D, Sata M. Roles of epicardial adipose tissue in the pathogenesis of coronary atherosclerosis - an update on recent findings[J]. Circ J, 2020, 85(1): 2. |
7 | Gruzdeva OV, Dyleva YA, Belik EV, et al. Relationship between epicardial and coronary adipose tissue and the expression of adiponectin, leptin, and interleukin 6 in patients with coronary artery disease[J]. J Pers Med, 2022, 12(2): 129. |
8 | Iacobellis G. Epicardial and pericardial fat: close, but very different[J]. Obesity (Silver Spring), 2009, 17(4): 625. |
9 | Ito H, Wakatsuki T, Yamaguchi K, et al. Atherosclerotic coronary plaque is associated with adventitial vasa vasorum and local inflammation in adjacent epicardial adipose tissue in fresh cadavers[J]. Circ J, 2020, 84(5): 769. |
10 | Chatterjee TK, Aronow BJ, Tong WS, et al. Human coronary artery perivascular adipocytes overexpress genes responsible for regulating vascular morphology, inflammation, and hemostasis[J]. Physiol Genomics, 2013, 45(16): 697. |
11 | Yang W, Tu H, Tang K, et al. MiR-3064 in epicardial adipose-derived exosomes targets neuronatin to regulate adipogenic differentiation of epicardial adipose stem cells[J]. Front Cardiovasc Med, 2021, 8: 709079. |
12 | McLaughlin T, Schnittger I, Nagy A, et al. Relationship between coronary atheroma, epicardial adipose tissue inflammation, and adipocyte differentiation across the human myocardial bridge[J]. J Am Heart Assoc, 2021, 10(22): e021003. |
13 | Getz GS, Reardon CA. Animal models of atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2012, 32(5): 1104. |
14 | Brown NK, Zhou Z, Zhang J, et al. Perivascular adipose tissue in vascular function and disease: a review of current research and animal models[J]. Arterioscler Thromb Vasc Biol, 2014, 34(8): 1621. |
15 | Milutinović A, Šuput D, Zorc-Pleskovič R. Pathogenesis of atherosclerosis in the tunica intima, media, and adventitia of coronary arteries: an updated review[J]. Bosn J Basic Med Sci, 2020, 20(1): 21. |
16 | Ahmadieh S, Kim HW, Weintraub NL. Potential role of perivascular adipose tissue in modulating atherosclerosis[J]. Clin Sci (Lond), 2020, 134(1): 3. |
17 | Verhagen SN, Vink A, van der Graaf Y, et al. Coronary perivascular adipose tissue characteristics are related to atherosclerotic plaque size and composition. A post-mortem study[J]. Atherosclerosis, 2012, 225(1): 99. |
18 | Suzuki T, Ogita H, Sato A, et al. Differences between patients with and without atherosclerosis in expression levels of inflammatory mediators in the adipose tissue around the coronary artery[J]. Int Heart J, 2021, 62(2): 390. |
19 | Konwerski M, Gromadka A, Arendarczyk A, et al. Atherosclerosis pathways are activated in pericoronary adipose tissue of patients with coronary artery disease[J]. J Inflamm Res, 2021, 14: 5419. |
20 | Farias-Itao DS, Pasqualucci CA, de Andrade RA, et al. Macrophage polarization in the perivascular fat was associated with coronary atherosclerosis[J]. J Am Heart Assoc, 2022, 11(6): e023274. |
21 | Konishi M, Sugiyama S, Sato Y, et al. Pericardial fat inflammation correlates with coronary artery disease[J]. Atherosclerosis, 2010, 213(2): 649. |
22 | Knapp M, Górski J, Lewkowicz J, et al. The gene and protein expression of the main components of the lipolytic system in human myocardium and heart perivascular adipose tissue. effect of coronary atherosclerosis[J]. Int J Mol Sci, 2020, 21(3): 737. |
23 | Mazzotta C, Basu S, Gower AC, et al. Perivascular adipose tissue inflammation in ischemic heart disease[J]. Arterioscler Thromb Vasc Biol, 2021, 41(3): 1239. |
24 | Sowka A, Dobrzyn P. Role of perivascular adipose tissue-derived adiponectin in vascular homeostasis[J]. Cells, 2021, 10(6): 1485. |
25 | Belik EV, Gruzdeva OV, Akbasheva OE, et al. [Adiponectin gene expression in local fat depots in patients with coronary heart disease depending on the degree of coronary lesion][J].Ter Arkh, 2020, 92(4): 23. |
26 | Vasamsetti SB, Natarajan N, Sadaf S, et al. Regulation of cardiovascular health and disease by visceral adipose tissue-derived metabolic hormones[J/OL]. J Physiol. (2022-06-06)[访问日期缺失]. . DOI:10.1113/JP282728. |
27 | Gruzdeva OV, Belik EV, Dyleva YA, et al. Expression of adipocytokines in heart fat depots depending on the degree of coronary artery atherosclerosis in patients with coronary artery disease[J]. PLoS One, 2021, 16(3): e0248716. |
28 | Spiroglou SG, Kostopoulos CG, Varakis JN, et al. Adipokines in periaortic and epicardial adipose tissue: differential expression and relation to atherosclerosis[J]. J Atheroscler Thromb, 2010, 17(2): 115. |
29 | Kang KW, Ok M, Lee SK. Leptin as a key between obesity and cardiovascular disease[J]. J Obes Metab Syndr, 2020, 29(4): 248. |
30 | Schneiderman J, Schaefer K, Kolodgie FD, et al. Leptin locally synthesized in carotid atherosclerotic plaques could be associated with lesion instability and cerebral emboli[J]. J Am Heart Assoc, 2012, 1(5): e001727. |
31 | Bickel C, Schnabel RB, Zeller T, et al. Predictors of leptin concentration and association with cardiovascular risk in patients with coronary artery disease: results from the AtheroGene study[J]. Biomarkers, 2017, 22(3/4): 210. |
32 | Rahmani A, Toloueitabar Y, Mohsenzadeh Y, et al. Association between plasma leptin/adiponectin ratios with the extent and severity of coronary artery disease[J]. BMC Cardiovasc Disord, 2020, 20(1): 474. |
33 | Varma B, Ogunmoroti O, Ndumele CE, et al. Higher leptin levels are associated with coronary artery calcium progression: the Multi-Ethnic Study of Atherosclerosis (MESA)[J]. Diabet Epidemiol Manag, 2022, 6: 100047. |
34 | Hartman J, Frishman WH. Inflammation and atherosclerosis: a review of the role of interleukin-6 in the development of atherosclerosis and the potential for targeted drug therapy[J]. Cardiol Rev, 2014, 22(3): 147. |
35 | Liu L, Shi Z, Ji X, et al. Adipokines, adiposity, and atherosclerosis[J]. Cell Mol Life Sci, 2022, 79(5): 272. |
36 | Antonopoulos AS, Angelopoulos A, Papanikolaou P, et al. Biomarkers of vascular inflammation for cardiovascular risk prognostication: a Meta-Analysis[J]. JACC Cardiovasc Imaging, 2022, 15(3): 460. |
37 | Hoene M, Weigert C. The role of interleukin-6 in insulin resistance, body fat distribution and energy balance[J]. Obes Rev, 2008, 9(1): 20. |
38 | Singh S, Anshita D, Ravichandiran V. MCP-1: function, regulation, and involvement in disease[J]. Int Immunopharmacol, 2021, 101(Pt B): 107598. |
39 | Rajsheker S, Manka D, Blomkalns AL, et al. Crosstalk between perivascular adipose tissue and blood vessels[J]. Curr Opin Pharmacol, 2010, 10(2): 191. |
40 | Chatterjee TK, Stoll LL, Denning GM, et al. Proinflammatory phenotype of perivascular adipocytes: influence of high-fat feeding[J]. Circ Res, 2009, 104(4): 541. |
41 | Öhman MK, Luo W, Wang H, et al. Perivascular visceral adipose tissue induces atherosclerosis in apolipoprotein E deficient mice[J]. Atherosclerosis, 2011, 219(1): 33. |
42 | Manka D, Chatterjee TK, Stoll LL, et al. Transplanted perivascular adipose tissue accelerates injury-induced neointimal hyperplasia: role of monocyte chemoattractant protein-1[J]. Arterioscler Thromb Vasc Biol, 2014, 34(8): 1723. |
43 | Anderson WD, Soh JY, Innis SE, et al. Sex differences in human adipose tissue gene expression and genetic regulation involve adipogenesis[J]. Genome Res, 2020, 30(10): 1379. |
44 | Sinitsky MY, Dyleva YA, Uchasova EG, et al. Adipokine gene expression in adipocytes isolated from different fat depots of coronary artery disease patients[J]. Arch Physiol Biochem, 2022, 128(1): 261. |
45 | Kowalówka A, Machnik G, Deja M, et al. Perivascular adipose tissue from the internal mammary artery in patients with severe coronary artery atherosclerosis[J]. Kardiol Pol, 2020, 78(12): 1215. |
46 | Mikami T, Furuhashi M, Sakai A, et al. Antiatherosclerotic phenotype of perivascular adipose tissue surrounding the saphenous vein in coronary artery bypass grafting[J]. J Am Heart Assoc, 2021, 10(7): e018905. |
47 | Otsuka F, Yahagi K, Sakakura K, et al. Why is the mammary artery so special and what protects it from atherosclerosis?[J]. Ann Cardiothorac Surg, 2013, 2(4): 519. |
48 | Numaguchi R, Furuhashi M, Matsumoto M, et al. Differential phenotypes in perivascular adipose tissue surrounding the internal thoracic artery and diseased coronary artery[J]. J Am Heart Assoc, 2019, 8(2): e011147. |
49 | Lambert C, Arderiu G, Bejar MT, et al. Stem cells from human cardiac adipose tissue depots show different gene expression and functional capacities[J]. Stem Cell Res Ther, 2019, 10(1): 361. |
50 | Large CL, Vitali HE, Whatley JD, et al.In vitromodel of coronary angiogenesis[J]. J Vis Exp, 2020, 卷缺失(157). e60558. |
51 | Palmer BR, Paterson MA, Frampton CM, et al. Vascular endothelial growth factor-a promoter polymorphisms, circulating VEGF-A and survival in acute coronary syndromes[J]. PLoS One, 2021, 16(7): e0254206. |
52 | Wang QC, Wang ZY, Xu Q, et al. Exploring the role of epicardial adipose tissue in coronary artery disease from the difference of gene expression[J]. Front Physiol, 2021, 12: 605811. |
53 | Kalayinia S, Arjmand F, Maleki M, et al. MicroRNAs: roles in cardiovascular development and disease[J]. Cardiovasc Pathol, 2021, 50: 107296. |
54 | Bär C, Chatterjee S, Falcão Pires I, et al. Non-coding RNAs: update on mechanisms and therapeutic targets from the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart[J]. Cardiovasc Res, 2020, 116(11): 1805. |
55 | Çakmak HA, Demir M. MicroRNA and Cardiovascular Diseases[J]. Balkan Med J, 2020;37(2): 60. |
56 | Zhelankin AV, Stonogina DA, Vasiliev SV, et al. Circulating extracellular miRNA analysis in patients with stable CAD and acute coronary syndromes[J]. Biomolecules, 2021, 11(7): 962. |
57 | Tolouei SEL, Curi TZ, Klider LM, et al. MicroRNA-30 and 145 as targets for the treatment of cardiovascular diseases: therapeutic feasibility and challenges[J]. Curr Pharm Des, 2021, 27(37): 3858. |
58 | Poller W, Dimmeler S, Heymans S, et al. Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives[J]. Eur Heart J, 2018, 39(29): 2704. |
59 | Li X, Ballantyne LL, Yu Y, et al. Perivascular adipose tissue-derived extracellular vesicle miR-221-3p mediates vascular remodeling[J]. FASEB J, 2019, 33(11): 12704. |
60 | de Abreu RC, Fernandes H, da Costa Martins PA, et al. Native and bioengineered extracellular vesicles for cardiovascular therapeutics[J]. Nat Rev Cardiol, 2020, 17(11): 685. |
61 | Vacca M, Di Eusanio M, Cariello M, et al. Integrative miRNA and whole-genome analyses of epicardial adipose tissue in patients with coronary atherosclerosis[J]. Cardiovasc Res, 2016, 109(2): 228. |
62 | Xue J, Suarez JS, Minaai M, et al. HMGB1 as a therapeutic target in disease[J]. J Cell Physiol, 2021, 236(5): 3406. |
63 | Wang Y, Sun X. The functions of LncRNA in the heart[J]. Diabetes Res Clin Pract, 2020, 168: 108249. |
64 | Anderson KM, Anderson DM. LncRNAs at the heart of development and disease[J]. Mamm Genome, 2022, 33(2): 354. |
65 | Collins L, Binder P, Chen H, et al. Regulation of long non-coding RNAs and MicroRNAs in heart disease: insight into mechanisms and therapeutic approaches[J]. Front Physiol, 2020, 11: 798. |
66 | Wang QC, Wang ZY, Xu Q, et al. lncRNA expression profiles and associated ceRNA network analyses in epicardial adipose tissue of patients with coronary artery disease[J]. Sci Rep, 2021, 11(1): 1567. |
67 | Du Y, Zhu Y, Liu Y, et al. Expression profiles of long noncoding and messenger RNAs in epicardial adipose tissue-derived from patients with coronary atherosclerosis[J]. Curr Vasc Pharmacol, 2022, 20(2): 189. |
68 | Zheng M, Zhao L, Yang X. Expression profiles of long noncoding RNA and mRNA in epicardial adipose tissue in patients with heart failure[J]. Biomed Res Int, 2019, 2019: 3945475. |
69 | Marwan M, Koenig S, Schreiber K, et al. Quantification of epicardial adipose tissue by cardiac CT: Influence of acquisition parameters and contrast enhancement[J]. Eur J Radiol, 2019, 121: 108732. |
70 | Lin A, Dey D, Wong DTL, et al. Perivascular adipose tissue and coronary atherosclerosis: from biology to imaging phenotyping[J]. Curr Atheroscler Rep, 2019, 21(12): 47. |
71 | Balcer B, Dykun I, Schlosser T, et al. Pericoronary fat volume but not attenuation differentiates culprit lesions in patients with myocardial infarction[J]. Atherosclerosis, 2018, 276: 182. |
72 | Hassan M, Said K, Rizk H, et al. Segmental peri-coronary epicardial adipose tissue volume and coronary plaque characteristics[J]. Eur Heart J Cardiovasc Imaging, 2016, 17(10): 1169. |
73 | Shan D, Dou G, Yang J, et al. Epicardial adipose tissue volume is associated with high risk plaque profiles in suspect CAD patients[J]. Oxid Med Cell Longev, 2021, 2021: 6663948. |
74 | Kwiecinski J, Dey D, Cadet S, et al. Peri-coronary adipose tissue density is associated with18F-sodium fluoride coronary uptake in stable patients with high-risk plaques[J]. JACC Cardiovasc Imaging, 2019, 12(10): 2000. |
75 | Oikonomou EK, Marwan M, Desai MY, et al. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data[J]. Lancet, 2018, 392(10151): 929. |
76 | Honold S, Wildauer M, Beyer C, et al. Reciprocal communication of pericoronary adipose tissue and coronary atherogenesis[J]. Eur J Radiol, 2021, 136: 109531. |
77 | Wen D, Li J, Ren J, et al. Pericoronary adipose tissue CT attenuation and volume: diagnostic performance for hemodynamically significant stenosis in patients with suspected coronary artery disease[J]. Eur J Radiol, 2021, 140: 109740. |
78 | Goeller M, Achenbach S, Cadet S, et al. Pericoronary adipose tissue computed tomography attenuation and high-risk plaque characteristics in acute coronary syndrome compared with stable coronary artery disease[J]. JAMA Cardiol, 2018, 3(9): 858. |
79 | van Diemen PA, Bom MJ, Driessen RS, et al. Prognostic value of RCA pericoronary adipose tissue CT-attenuation beyond high-risk plaques, plaque volume, and ischemia[J]. JACC Cardiovasc Imaging, 2021, 14(8): 1598. |
80 | Sun JT, Sheng XC, Feng Q, et al. Pericoronary fat attenuation index is associated with vulnerable plaque components and local immune-inflammatory activation in patients with non-ST elevation acute coronary syndrome[J]. J Am Heart Assoc, 2022, 11(2): e022879. |
81 | Antonopoulos AS, Sanna F, Sabharwal N, et al. Detecting human coronary inflammation by imaging perivascular fat[J]. Sci Transl Med, 2017, 9(398): eaal2658. |
82 | Lin A, Nerlekar N, Yuvaraj J, et al. Pericoronary adipose tissue computed tomography attenuation distinguishes different stages of coronary artery disease: a cross-sectional study[J]. Eur Heart J Cardiovasc Imaging, 2021, 22(3): 298. |
83 | Macritchie N, Noonan J, Guzik TJ, et al. Molecular imaging of cardiovascular inflammation[J]. Br J Pharmacol, 2021, 178(21): 4216. |
84 | Ohyama K, Matsumoto Y, Takanami K, et al. Coronary adventitial and perivascular adipose tissue inflammation in patients with vasospastic angina[J]. J Am Coll Cardiol, 2018, 71(4): 414. |
85 | 王冰, 徐依多, 邵山, 等.18F-FDG PET/CT测量的左心房心外膜脂肪炎症活性与心房颤动的相关性[J]. 中华心血管病杂志, 2021, 49(12): 1213. |
86 | Mazurek T, Kochman J, Kobylecka M, et al. Inflammatory activity of pericoronary adipose tissue may affect plaque composition in patients with acute coronary syndrome without persistent ST-segment elevation: preliminary results[J]. Kardiol Pol, 2014, 72(5): 410. |
87 | Mazurek T, Kobylecka M, Zielenkiewicz M, et al. PET/CT evaluation of18F-FDG uptake in pericoronary adipose tissue in patients with stable coronary artery disease: independent predictor of atherosclerotic lesions' formation?[J]. J Nucl Cardiol, 2017, 24(3): 1075. |
88 | Xi XY, Liu Z, Wang LF, et al. Prognostic value of cardiac inflammation in ST-segment elevation myocardial infarction: a18F-fluorodeoxyglucose PET/CT study[J/OL]. J Nucl Cardiol. (2011-11-12)[访问日期缺失]. . DOI:10.1007/s12350-021-02858-6. |
89 | AlJaroudi WA, Hage FG. Review of cardiovascular imaging in the Journal of Nuclear Cardiology 2020: positron emission tomography, computed tomography, and magnetic resonance[J]. J Nucl Cardiol, 2021, 28(5): 2100. |
90 | Li L, Li X, Jia Y, et al. Sodium-fluoride PET-CT for the non-invasive evaluation of coronary plaques in symptomatic patients with coronary artery disease: a cross-correlation study with intravascular ultrasound[J]. Eur J Nucl Med Mol Imaging, 2018, 45(12): 2181. |
91 | Joshi NV, Vesey AT, Williams MC, et al.18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial[J]. Lancet, 2014, 383(9918): 705. |
92 | Guglielmo M, Lin A, Dey D, et al. Epicardial fat and coronary artery disease: Role of cardiac imaging[J]. Atherosclerosis, 2021, 321: 30. |
93 | Davidovich D, Gastaldelli A, Sicari R. Imaging cardiac fat[J]. Eur Heart J Cardiovasc Imaging, 2013, 14(7): 625. |
94 | Homsi R, Sprinkart AM, Gieseke J, et al. 3D-Dixon cardiac magnetic resonance detects an increased epicardial fat volume in hypertensive men with myocardial infarction[J]. Eur J Radiol, 2016, 85(5): 936. |
95 | Liang KW, Tsai IC, Lee WJ, et al. MRI measured epicardial adipose tissue thickness at the right AV groove differentiates inflammatory status in obese men with metabolic syndrome[J]. Obesity (Silver Spring), 2012, 20(3): 525. |
96 | Ng ACT, Strudwick M, van der Geest RJ, et al. Impact of epicardial adipose tissue, left ventricular myocardial fat content, and interstitial fibrosis on myocardial contractile function[J]. Circ Cardiovasc Imaging, 2018, 11(8): e007372. |
97 | Ma Y, Ma Q, Wang X, et al. Incremental prognostic value of pericoronary adipose tissue thickness measured using cardiac magnetic resonance imaging after revascularization in patients with ST-elevation myocardial infarction[J]. Front Cardiovasc Med, 2022, 9: 781402. |
98 | Toya T, Corban MT, Imamura K, et al. Coronary perivascular epicardial adipose tissue and major adverse cardiovascular events after ST segment-elevation myocardial infarction[J]. Atherosclerosis, 2020, 302: 27. |
99 | Skiba DS, Nosalski R, Mikolajczyk TP, et al. Anti-atherosclerotic effect of the angiotensin 1-7 mimetic AVE0991 is mediated by inhibition of perivascular and plaque inflammation in early atherosclerosis[J]. Br J Pharmacol, 2017, 174(22): 4055. |
100 | Mikolajczyk TP, Nosalski R, Szczepaniak P, et al. Role of chemokine RANTES in the regulation of perivascular inflammation, T-cell accumulation, and vascular dysfunction in hypertension[J]. FASEB J, 2016, 30(5): 1987. |
101 | Munjal A, Khandia R. Atherosclerosis: orchestrating cells and biomolecules involved in its activation and inhibition[J]. Adv Protein Chem Struct Biol, 2020, 120: 85. |
102 | Veillard NR, Kwak B, Pelli G, et al. Antagonism of RANTES receptors reduces atherosclerotic plaque formation in mice[J]. Circ Res, 2004, 94(2): 253. |
103 | Veillard NR, Steffens S, Pelli G, et al. Differential influence of chemokine receptors CCR2 and CXCR3 in development of atherosclerosisin vivo[J]. Circulation, 2005, 112(6): 870. |
104 | van Wanrooij EJA, de Jager SCA, van Es T, et al. CXCR3 antagonist NBI-74330 attenuates atherosclerotic plaque formation in LDL receptor-deficient mice[J]. Arterioscler Thromb Vasc Biol, 2008, 28(2): 251. |
105 | Takaoka M, Nagata D, Kihara S, et al. Periadventitial adipose tissue plays a critical role in vascular remodeling[J]. Circ Res, 2009, 105(9): 906. |
106 | Takaoka M, Suzuki H, Shioda S, et al. Endovascular injury induces rapid phenotypic changes in perivascular adipose tissue[J]. Arterioscler Thromb Vasc Biol, 2010, 30(8): 1576. |
107 | Karastergiou K, Evans I, Ogston N, et al. Epicardial adipokines in obesity and coronary artery disease induce atherogenic changes in monocytes and endothelial cells[J]. Arterioscler Thromb Vasc Biol, 2010, 30(7): 1340. |
[1] | 张倩, 谢永刚, 马加海, 张建中.6%羟乙基淀粉130/0.4对创伤性蛋白微血管渗漏影响的研究进展[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(11): 856-859. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||