betway必威登陆网址 (betway.com )学报››2023,Vol. 44››Issue (11): 856-863.DOI:10.3969/j.issn.2097-0005.2023.11.012
• 综述 •上一篇
张宜洁1,2(), 刘向春1,2, 王英惠1,2, 柳刚1,2,3(
)
收稿日期:
2023-08-15出版日期:
2023-11-25发布日期:
2024-01-22通讯作者:
柳刚作者简介:
张宜洁,硕士研究生,研究方向:慢性肾脏病,E-mail:zhangyijie9909@163.com。基金资助:
Yijie ZHANG1,2(), Yinghui WANG1,2, Xiangchun LIU1,2, Gang LIU1,2,3(
)
Received:
2023-08-15Online:
2023-11-25Published:
2024-01-22Contact:
Gang LIU摘要:
蛋白尿是糖尿病肾脏病的特征性表现和重要的疾病进展风险因素,会引起肾功能恶化直至肾衰竭,与终末期肾脏病和心血管疾病的风险增加相关。足细胞是肾小球滤过屏障的重要组成部分之一,足细胞损伤是蛋白尿发生的主要原因。自噬作为维持足细胞稳态的重要机制,与体内营养状态密切相关。达格列净是钠-葡萄糖协同转运体2抑制剂,具有肾脏保护作用,有研究表明该药可通过模拟营养剥夺状态、抑制哺乳动物雷帕霉素靶蛋白1,并激活腺苷酸活化蛋白激酶、沉默信息调节因子1,从而增强足细胞自噬和减少蛋白尿。本文就达格列净通过营养感应信号通路促进糖尿病肾脏病足细胞自噬从而起到保护肾功能的作用进行系统性综述,为糖尿病肾脏病的预防和治疗提供可行的临床应用和未来的研究建议。
张宜洁, 刘向春, 王英惠, 柳刚. 达格列净促进糖尿病肾脏病足细胞自噬的机制[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(11): 856-863.
Yijie ZHANG, Yinghui WANG, Xiangchun LIU, Gang LIU. Mechanism of dagliflozin in promoting podocyte autophagy in diabetic kidney disease[J]. Journal of Shandong First Medical Unversity & Shandong Academy of Medical Sciences, 2023, 44(11): 856-863.
图1达格列净促进DKD足细胞自噬的分子机制mAMPK为腺苷酸活化蛋白激酶;Atg为自噬相关基因;Beclin1为自噬效应蛋白;BCL2为交互蛋白;FOXO为叉头框蛋白;LC3为微管相关蛋白轻链3;mTOR1为哺乳动物雷帕霉素靶蛋白1;nephrin为肾病蛋白;podocin为足细胞裂隙膜蛋白;p62为选择性自噬接头蛋白;Raptor为哺乳动物雷帕霉素靶蛋白调控相关蛋白;SIRT1为沉默信息调节因子1;synaptopodin为突触足蛋白;TSC为结节性硬化症复合体;ULK1为UNC-51样激酶1。
1 | Bonner R, Albajrami O, Hudspeth J, et al. Diabetic kidney disease[J].Prim Care,2020,47(4): 645. |
2 | Disease Kidney : Improving Global Outcomes (KDIGO) Diabetes Work Group. KDIGO 2022 clinical practice guideline for diabetes management in chronic kidney disease[J].Kidney Int,2022,102(5S): S1. |
3 | Levey AS, Gansevoort RT, Coresh J, et al. Change in albuminuria and GFR as end points for clinical trials in early stages of CKD: a scientific workshop sponsored by the national kidney foundation in collaboration with the US food and drug administration and European medicines agency[J].Am J Kidney Dis,2020,75(1): 84. |
4 | Heerspink HJL, Greene T, Tighiouart H, et al. Change in albuminuria as a surrogate endpoint for progression of kidney disease: a meta-analysis of treatment effects in randomised clinical trials[J].Lancet Diabetes Endocrinol,2019,7(2): 128. |
5 | Kravets I, Mallipattu SK. The role of podocytes and podocyte-associated biomarkers in diagnosis and treatment of diabetic kidney disease[J].J Endocr Soc,2020,4(4): bvaa029. |
6 | Han YP, Liu LJ, Yan JL, et al. Autophagy and its therapeutic potential in diabetic nephropathy[J].Front Endocrinol (Lausanne),2023,14: 1139444. |
7 | Lin TA, Wu VC, Wang CY. Autophagy in chronic kidney diseases[J].Cells,2019,8(1): 61. |
8 | Wang X, Zeng HX, Jiang L, et al. Clinical significance of glomerular autophagy in evaluation of diabetic kidney disease progression[J].Diabetes Metab Syndr Obes,2022,15: 1945. |
9 | Yang L, Liang B, Li J, et al. Dapagliflozin alleviates advanced glycation end product induced podocyte injury through AMPK/mTOR mediated autophagy pathway[J].Cell Signal,2022,90: 110206. |
10 | Parmar UM, Jalgaonkar MP, Kulkarni YA, et al. Autophagy-nutrient sensing pathways in diabetic complications[J].Pharmacol Res,2022,184: 106408. |
11 | Yang D, Livingston MJ, Liu Z, et al. Autophagy in diabetic kidney disease: regulation, pathological role and therapeutic potential[J].Cell Mol Life Sci,2018,75(4): 669. |
12 | Menikdiwela KR, Ramalingam L, Rasha F, et al. Autophagy in metabolic syndrome: breaking the wheel by targeting the renin-angiotensin system[J].Cell Death Dis,2020,11(2): 87. |
13 | Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease[J].Nat Rev Mol Cell Biol,2020,21(4): 183. |
14 | Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes[J].N Engl J Med,2019,380(4): 347. |
15 | McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction[J].N Engl J Med,2019,381(21): 1995. |
16 | Heerspink HJL, Stefánsson BV, Correa-Rotter R, et al. Dapagliflozin in patients with chronic kidney disease[J].N Engl J Med,2020,383(15): 1436. |
17 | Jongs N, Greene T, Chertow GM, et al. Effect of dapagliflozin on urinary albumin excretion in patients with chronic kidney disease with and without type 2 diabetes: a prespecified analysis from the DAPA-CKD trial[J].Lancet Diabetes Endocrinol,2021,9(11): 755. |
18 | Packer M. Interplay of adenosine monophosphate-activated protein kinase/sirtuin-1 activation and sodium influx inhibition mediates the renal benefits of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes: a novel conceptual framework[J].Diabetes Obes Metab,2020,22(5): 734. |
19 | Heyman SN, Raz I, Dwyer JP, et al. Diabetic proteinuria revisited: updated physiologic perspectives[J].Cells,2022,11(18): 2917. |
20 | Looker HC, Mauer M, Saulnier PJ, et al. Changes in albuminuria but not GFR are associated with early changes in kidney structure in type 2 diabetes[J].J Am Soc Nephrol,2019,30(6): 1049. |
21 | Tian Y, Chen XM, Liang XM, et al. SGLT2 inhibitors attenuate nephrin loss and enhance TGF-β1 secretion in type 2 diabetes patients with albuminuria: a randomized clinical trial[J].Sci Rep,2022,12(1): 15695. |
22 | Liu H, Wang Q, Shi G, et al. Emodin ameliorates renal damage and podocyte injury in a rat model of diabetic nephropathy via regulating AMPK/mTOR-mediated autophagy signaling pathway[J].Diabetes Metab Syndr Obes,2021,14: 1253. |
23 | Palmer MB, Abedini A, Jackson C, et al. The role of glomerular epithelial injury in kidney function decline in patients with diabetic kidney disease in the Trident cohort[J].Kidney Int Rep,2021,6(4): 1066. |
24 | Naylor RW, Morais MRPT, Lennon R. Complexities of the glomerular basement membrane[J].Nat Rev Nephrol,2021,17(2): 112. |
25 | Royal V, Zee J, Liu Q, et al. Ultrastructural characterization of proteinuric patients predicts clinical outcomes[J].J Am Soc Nephrol,2020,31(4): 841. |
26 | Stefan G, Stancu S, Zugravu A, et al. Histologic predictors of renal outcome in diabetic nephropathy: beyond renal pathology society classification[J].Medicine (Baltimore),2019,98(27): e16333. |
27 | Liu L, Yang L, Chang B, et al. The protective effects of rapamycin on cell autophagy in the renal tissues of rats with diabetic nephropathy via mTOR-S6K1-LC3Ⅱ signaling pathway[J].Ren Fail,2018,40(1): 492. |
28 | Fan Y, Yang Q, Yang Y, et al. Sirt6 suppresses high glucose-induced mitochondrial dysfunction and apoptosis in podocytes through AMPK activation[J].Int J Biol Sci,2019,15(3): 701. |
29 | Bork T, Liang W, Yamahara K, et al. Podocytes maintain high basal levels of autophagy independent of mtor signaling[J].Autophagy,2020,16(11): 1932. |
30 | Zhang L, Wen Z, Han L, et al. Research progress on the pathological mechanisms of podocytes in diabetic nephropathy[J].J Diabetes Res,2020,2020: 7504798. |
31 | Zhao X, Chen Y, Tan X, et al. Advanced glycation end-products suppress autophagic flux in podocytes by activating mammalian target of rapamycin and inhibiting nuclear translocation of transcription factor EB[J].J Pathol,2018,245(2): 235. |
32 | Wang LH, Wang YY, Liu L, et al. From diabetes to diabetic complications: role of autophagy[J].Curr Med Sci,2023,43(3): 434. |
33 | Zhang X, Zhang L, Chen Z, et al. Exogenous spermine attenuates diabetic kidney injury in rats by inhibiting AMPK/mTOR signaling pathway[J].Int J Mol Med,2021,47(3): 27. |
34 | Kume S. Pathophysiological roles of nutrient-sensing mechanisms in diabetes and its complications[J].Diabetol Int,2019,10(4): 245. |
35 | Fukushima K, Kitamura S, Tsuji K, et al. Sodium-glucose cotransporter 2 inhibitors work as a "regulator" of autophagic activity in overnutrition diseases[J].Front Pharmacol,2021,12: 761842. |
36 | Kogot-Levin A, Hinden L, Riahi Y, et al. Proximal tubule mTORC1 is a central player in the pathophysiology of diabetic nephropathy and its correction by SGLT2 inhibitors[J].Cell Rep,2020,32(4): 107954. |
37 | Su J, Ye D, Gao C, et al. Mechanism of progression of diabetic kidney disease mediated by podocyte mitochondrial injury[J].Mol Biol Rep,2020,47(10): 8023. |
38 | Gouda K, AbdelHamid S, Mansour A, et al. Amelioration of diabetic nephropathy by targeting autophagy via rapamycin or fasting: relation to cell apoptosis/survival[J].Curr Issues Mol Biol,2021,43(3): 1698. |
39 | Packer M. Role of impaired nutrient and oxygen deprivation signaling and deficient autophagic flux in diabetic CKD development: implications for understanding the effects of sodium-glucose cotransporter 2-inhibitors[J].J Am Soc Nephrol,2020,31(5): 907. |
40 | Szrejder M, Piwkowska A. AMPK signalling: implications for podocyte biology in diabetic nephropathy[J].Biol Cell,2019,111(5): 109. |
41 | Juszczak F, Caron N, Mathew AV, et al. Critical role for AMPK in metabolic disease-induced chronic kidney disease[J].Int J Mol Sci,2020,21(21): 7994. |
42 | Rogacka D, Audzeyenka I, Piwkowska A. Regulation of podocytes function by AMP-activated protein kinase[J].Arch Biochem Biophys,2020,692: 108541. |
43 | Ren H, Shao Y, Wu C, et al. Metformin alleviates oxidative stress and enhances autophagy in diabetic kidney disease via AMPK/SIRT1-FoxO1 pathway[J].Mol Cell Endocrinol,2020,500: 110628. |
44 | Wang W, Sun W, Cheng Y, et al. Role of sirtuin-1 in diabetic nephropathy[J].J Mol Med (Berl),2019,97(3): 291. |
45 | Hong Q, Zhang L, Das B, et al. Increased podocyte sirtuin-1 function attenuates diabetic kidney injury[J].Kidney Int,2018,93(6): 1330. |
46 | Zhong Y, Lee K, He JC. SIRT1 is a potential drug target for treatment of diabetic kidney disease[J].Front Endocrinol (Lausanne),2018,9: 624. |
47 | Dong W, Zhang H, Zhao C, et al. Silencing of miR-150-5p ameliorates diabetic nephropathy by targeting SIRT1/p53/AMPK pathway[J].Front Physiol,2021,12: 624989. |
48 | Zhang Y, Chang B, Zhang J, et al. LncRNA SOX2OT alleviates the high glucose-induced podocytes injury through autophagy induction by the miR-9/SIRT1 axis[J].Exp Mol Pathol,2019,110: 104283. |
49 | Tang C, Livingston MJ, Liu Z, et al. Autophagy in kidney homeostasis and disease[J].Nat Rev Nephrol,2020,16(9): 489. |
50 | Umino H, Hasegawa K, Minakuchi H, et al. High basolateral glucose increases sodium-glucose cotransporter 2 and reduces sirtuin-1 in renal tubules through glucose transporter-2 detection[J].Sci Rep,2018,8(1): 6791. |
51 | Li F, Song L, Chen J, et al. Effect of genipin-1-β-d-gentiobioside on diabetic nephropathy in mice by activating AMP-activated protein kinase/silencing information regulator-related enzyme 1/nuclear factor-κB pathway[J].J Pharm Pharmacol,2021,73(9): 1201. |
52 | Tang Z, Hu B, Zang F, et al. Nrf2 drives oxidative stress-induced autophagy in nucleus pulposus cells via a Keap1/Nrf2/p62 feedback loop to protect intervertebral disc from degeneration[J].Cell Death Dis,2019,10(7): 510. |
53 | Lin Q, Li S, Jiang N, et al. PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation[J].Redox Biol,2019,26: 101254. |
54 | Kong L, Deng J, Zhou X, et al. Sitagliptin activates the p62-Keap1-Nrf2 signalling pathway to alleviate oxidative stress and excessive autophagy in severe acute pancreatitis-related acute lung injury[J].Cell Death Dis,2021,12(10): 928. |
55 | Zuo H, Wang S, Feng J, et al. BRD4 contributes to high-glucose-induced podocyte injury by modulating Keap1/Nrf2/ARE signaling[J].Biochimie,2019,165: 100. |
56 | Xu E, Yin C, Yi X, et al. Inhibition of USP15 ameliorates high-glucose-induced oxidative stress and inflammatory injury in podocytes through regulation of the Keap1/Nrf2 signaling[J].Environ Toxicol,2022,37(4): 765. |
57 | Kidokoro K, Kadoya H, Cherney DZI, et al. Insights into the regulation of GFR by the Keap1-Nrf2 pathway[J].Kidney360,2023,4(10): 1454. |
58 | Jaikumkao K, Promsan S, Thongnak L, et al. Dapagliflozin ameliorates pancreatic injury and activates kidney autophagy by modulating the AMPK/mTOR signaling pathway in obese rats[J].J Cell Physiol,2021,236(9): 6424. |
59 | Xu J, Kitada M, Ogura Y, et al. Dapagliflozin restores impaired autophagy and suppresses inflammation in high glucose-treated HK-2 cells[J].Cells,2021,10(6): 1457. |
60 | Feng B, Yang F, Liu J, et al. Amelioration of diabetic kidney injury with dapagliflozin is associated with suppressing renal HMGB1 expression and restoring autophagy in obese mice[J].J Diabetes Complications,2023,37(3): 108409. |
61 | Cassis P, Locatelli M, Cerullo D, et al. SGLT2 inhibitor dapagliflozin limits podocyte damage in proteinuric nondiabetic nephropathy[J].JCI Insight,2018,3(15): e98720. |
62 | Packer M. Role of deranged energy deprivation signaling in the pathogenesis of cardiac and renal disease in states of perceived nutrient overabundance[J].Circulation,2020,141(25): 2095. |
63 | Ren FF, Xie ZY, Jiang YN, et al. Dapagliflozin attenuates pressure overload-induced myocardial remodeling in mice via activating SIRT1 and inhibiting endoplasmic reticulum stress[J].Acta Pharmacol Sin,2022,43(7): 1721. |
64 | Heerspink HJL, Sjöström CD, Inzucchi SE, et al. Reduction in albuminuria with dapagliflozin cannot be predicted by baseline clinical characteristics or changes in most other risk markers[J].Diabetes Obes Metab,2019,21(3): 720. |
65 | Provenzano M, Puchades MJ, Garofalo C, et al. Albuminuria-lowering effect of dapagliflozin, eplerenone, and their combination in patients with chronic kidney disease: a randomized crossover clinical trial[J].J Am Soc Nephrol,2022,33(8): 1569. |
66 | Pollock C, Stefánsson B, Reyner D, et al. Albuminuria-lowering effect of dapagliflozin alone and in combination with saxagliptin and effect of dapagliflozin and saxagliptin on glycaemic control in patients with type 2 diabetes and chronic kidney disease (DELIGHT): a randomised, double-blind, placebo-controlled trial[J].Lancet Diabetes Endocrinol,2019,7(6): 429. |
[1] | 张青青, 刘珊珊, 王英惠, 柳刚.达格列净治疗慢性肾脏病的研究进展[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(5): 388-392. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||