1 |
高利增, 阎锡蕴. 纳米酶的发现与应用[J].生物化学与生物物理进展,2013,40(10): 892. |
2 |
Gao LZ, Zhuang J, Nie L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles[J].Nat Nanotechnol,2007,2(9): 577. |
3 |
Huang Y, Ren J, Qu X. Nanozymes:classification,catalytic mechanisms,activity regulation,and applications[J].Chem Rev,2019,119(6): 4357. |
4 |
Wang Q, Jiang J, Gao LZ. Nanozyme-based medicine for enzymatic therapy: progress and challenges[J].Biomed Mater,2021,16(4): 10. |
5 |
Jeswani G, Paul SD, Jha AK. Advances in the delivery of cancer therapeutics: a comprehensive review[J].Curr Drug Deliv,2018,15(1): 21. |
6 |
杜阳阳. 金纳米棒复合材料用于增强m-6A-mRNA甲基化介导的癌症免疫治疗的研究[D]. 长春: 吉林大学,2023. |
7 |
He L, Qing FZ, Li MD, et al. Paclitaxel/IR1061-Co-Loaded protein nanoparticle for tumor-targeted and pH/NIR-II-triggered synergistic photothermal-chemotherapy[J].Int J Nanomedicine,2020,15: 2337. |
8 |
Yao L, Zhao MM, Luo QW, et al. Carbon quantum dots-based nanozyme from coffee induces cancer cell ferroptosis to activate antitumor immunity[J].ACS Nano,2022,16(6): 9228. |
9 |
Zeng L, Han Y, Chen Z, et al. Biodegradable and peroxidase-mimetic boron oxynitride nanozyme for breast cancer therapy[J].Adv Sci (Weinh),2021,8(16): e2101184. |
10 |
Wei CF, Liu YN, Zhu XF, et al. Iridium/Ruthenium nanozyme reactors with cascade catalytic ability for synergistic oxidation therapy and starvation therapy in the treatment of breast cancer[J].Biomaterials,2020,238: 119848. |
11 |
Zheng NN, Fu Y, Liu XJ, et al. Tumor microenvironment responsive self-cascade catalysis for synergistic chemo/chemodynamic therapy by multifunctional biomimetic nanozymes[J].J Mater Chem B,2022,10(4): 637. |
12 |
Zhu LP, Liu J, Zhou GY, et al. Remodeling of tumor microenvironment by tumor-targeting nanozymes enhances immune activation of CAR T cells for combination therapy[J].Small,2021,17(43): e2102624. |
13 |
Xuan J, Feng W, Wang J, et al. Antimicrobial peptides for combating drug-resistant bacterial infections[J].Drug Resist Updat,2023: 100954. |
14 |
Hu XL, Shang Y, Yan KC, et al. Low-dimensional nanomaterials for antibacterial applications[J].J Mater Chem B,2021,9(17): 3640. |
15 |
Mba IE, Nweze EI. Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: research progress, challenges, and prospects[J].World J Microbiol Biotechnol,2021,37(6): 108. |
16 |
Hong YZ, Zeng J, Wang XH, et al. Post-stress bacterial cell death mediated by reactive oxygen species[J].Proc Natl Acad Sci U S A,2019,116(20): 10064. |
17 |
Liu Y, Shi L, Su L, et al. Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control[J].Chem Soc Rev,2019,48(2): 428. |
18 |
Guo JX, Wei WY, Zhao YN, et al. Iron oxide nanoparticles with photothermal performance and enhanced nanozyme activity for bacteria-infected wound therapy[J].Regen Biomater,2022,9: rbac041. |
19 |
Xi J, Wei G, An L, et al. Copper/carbon hybrid nanozyme:tuning catalytic activity by the copper state for antibacterial therapy[J].Nano Lett,2019,19(11): 7645. |
20 |
Li YQ, Liu JW. Nanozyme's catching up: activity, specificity, reaction conditions and reaction types[J].Mater Horiz,2021,8(2): 336. |
21 |
Chen L, Xing S, Lei Y, et al. A glucose-powered activatable nanozyme breaking pH and H2O2 limitations for treating diabetic infections[J].Angew Chem Int Ed Engl,2021,60(44): 23534. |
22 |
Torres J, Mehandru S, Colombel JF, et al. Crohn's disease[J].Lancet,2017,389(10080): 1741. |
23 |
Corridoni D, Arseneau KO, Cominelli F. Inflammatory bowel disease[J].Immunol Lett,2014,161(2): 231. |
24 |
Hedin CRH, Vavricka SR, Stagg AJ, et al. The pathogenesis of extraintestinal manifestations: implications for IBD research, diagnosis, and therapy[J].J Crohns Colitis,2019,13(5): 541. |
25 |
Na SY, Moon W. Perspectives on current and novel treatments for inflammatory bowel disease[J].Gut Liver,2019,13(6): 604. |
26 |
Seyedian SS, Nokhostin F, Malamir MD. A review of the diagnosis, prevention, and treatment methods of inflammatory bowel disease[J].J Med Life,2019,12(2): 113. |
27 |
Tian T, Wang ZL, Zhang JH. Pathomechanisms of oxidative stress in inflammatory bowel disease and potential antioxidant therapies[J].Oxid Med Cell Longev,2017,2017: 4535194. |
28 |
Zeng F, Shi YH, Wu CN, et al. A drug-free nanozyme for mitigating oxidative stress and inflammatory bowel disease[J].J Nanobiotechnology,2022,20(1): 107. |
29 |
Yang Z, Zhou X, Wang L, et al. Mn3O4 nanozyme loaded thermosensitive PDLLA-PEG-PDLLA hydrogels for the treatment of inflammatory bowel disease[J].ACS Appl Mater Interfaces,2023,15(28): 33273. |
30 |
Li JW, Sun MC, Liu LL, et al. Nanoprobiotics for remolding the pro-inflammatory microenvironment and microbiome in the treatment of colitis[J].Nano Lett,2023,23(18): 8593. |
31 |
中华医学会皮肤性病学分会银屑病专业委员会. 中国银屑病诊疗指南(2023版)[J].中华皮肤科杂志,2023,56(7): 573. |
32 |
Strober BE, van der Walt JM, Armstrong AW, et al. Clinical goals and barriers to effective psoriasis care[J].Dermatol Ther (Heidelb),2019,9(1): 5. |
33 |
Korman NJ. Management of psoriasis as a systemic disease: what is the evidence?[J].Br J Dermatol,2020,182(4): 840. |
34 |
Blagov A, Sukhorukov V, Guo S, et al. The role of oxidative stress in the induction and development of psoriasis[J].Front Biosci (Landmark Ed),2023,28(6): 118. |
35 |
Wu L, Liu G, Wang W, et al. Cyclodextrin-Modified CeO2 nanoparticles as a multifunctional nanozyme for combinational therapy of psoriasis[J].Int J Nanomedicine,2020,15: 2515. |