betway必威登陆网址 (betway.com )学报››2022,Vol. 43››Issue (5): 327-334.DOI:10.3969/j.issn.2097-0005.2022.05.002
收稿日期:
2021-12-24出版日期:
2022-05-25发布日期:
2022-06-09通讯作者:
张敬军作者简介:
徐雯,硕士研究生,主要从事癫痫发病机制研究,E-mail:2524944261@qq.com。基金资助:
Wen XU(), Yuqin LV, Lei GAO, Jingjun ZHANG(
)
Received:
2021-12-24Online:
2022-05-25Published:
2022-06-09Contact:
Jingjun ZHANG摘要:
基于多组学数据探究奥卡西平靶基因与癫痫基因的相关性,探讨奥卡西平抗痫机制。
借助DrugBank数据库检索奥卡西平靶基因,利用Magama软件及整合单细胞测序数据验证奥卡西平靶基因在全基因组关联分析(genome-wide association study,GWAS)层面与癫痫致病基因的相关性,应用Fisher检验验证奥卡西平靶基因与稀有变异癫痫危险基因存在显著遗传重叠,运用R软件进行奥卡西平靶基因富集,基于DAVID数据库对靶点进行基因本体功能富集分析和京都基因与基因组百科全书信号通路富集分析。
共获得奥卡西平药物靶点25种,主要为钠离子通道、细胞色素P450家族成员、醛酮还原酶家族成员、血清白蛋白、羰基还原酶家族成员。通过癫痫GWAS数据基因集分析,奥卡西平靶基因与癫痫致病基因存在显著关联,且与单基因突变所致癫痫风险基因存在显著重叠,主要为电压门控钠离子通道。通过测序得出奥卡西平富集神经细胞类型主要为下丘脑GABA能神经元和中型多棘神经元。通过靶向富集途径分析,显示奥卡西平药物靶点显著富集在中枢神经系统钠离子通道中。
基于生物信息学整合分析,奥卡西平可能通过作用于下丘脑GABA能神经元、中型多棘神经元中的钠离子通道基因发挥抗痫作用。
徐雯, 吕玉芹, 高蕾, 张敬军. 基于多组学数据研究奥卡西平抗痫机制[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(5): 327-334.
Wen XU, Yuqin LV, Lei GAO, Jingjun ZHANG. Study on the antiepileptic mechanism of oxcarbazepine based on multi-group data[J]. Journal of Shandong First Medical Unversity & Shandong Academy of Medical Sciences, 2022, 43(5): 327-334.
|
|
|
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
表1奥卡西平25种关键靶基因
|
|
|
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
靶基因 | 靶基因ID | 物种 | 靶基因全称 |
---|---|---|---|
ABCB1 | 5243 | Homo sapiens | ATP binding cassette subfamily B member 1(ABCB1) |
CYP2C19 | 1557 | Homo sapiens | cytochrome P450 family 2 subfamily C member 19(CYP2C19) |
CYP3A4 | 1576 | Homo sapiens | cytochrome P450 family 3 subfamily A member 4(CYP3A4) |
CYP3A5 | 1577 | Homo sapiens | cytochrome P450 family 3 subfamily A member 5(CYP3A5) |
SCN11A | 11280 | Homo sapiens | sodium voltage-gated channel alpha subunit 11(SCN11A) |
SCN9A | 6335 | Homo sapiens | sodium voltage-gated channel alpha subunit 9(SCN9A) |
SCN7A | 6332 | Homo sapiens | sodium voltage-gated channel alpha subunit 7(SCN7A) |
SCN5A | 6331 | Homo sapiens | sodium voltage-gated channel alpha subunit 5(SCN5A) |
SCN3B | 55800 | Homo sapiens | sodium voltage-gated channel beta subunit 3(SCN3B) |
SCN3A | 6328 | Homo sapiens | sodium voltage-gated channel alpha subunit 3(SCN3A) |
SCN1B | 6324 | Homo sapiens | sodium voltage-gated channel beta subunit 1(SCN1B) |
CBR3 | 874 | Homo sapiens | carbonyl reductase 3(CBR3) |
SCN1A | 6323 | Homo sapiens | sodium voltage-gated channel alpha subunit 1(SCN1A) |
CBR1 | 873 | Homo sapiens | carbonyl reductase 1(CBR1) |
AKR1C1 | 1645 | Homo sapiens | aldo-keto reductase family 1 member C1(AKR1C1) |
AKR1C3 | 8644 | Homo sapiens | aldo-keto reductase family 1 member C3(AKR1C3) |
AKR1C2 | 1646 | Homo sapiens | aldo-keto reductase family 1 member C2(AKR1C2) |
AKR1C4 | 1109 | Homo sapiens | aldo-keto reductase family 1 member C4(AKR1C4) |
SCN10A | 6336 | Homo sapiens | sodium voltage-gated channel alpha subunit 10(SCN10A) |
SCN8A | 6334 | Homo sapiens | sodium voltage-gated channel alpha subunit 8(SCN8A) |
ALB | 213 | Homo sapiens | albumin(ALB) |
SCN4A | 6329 | Homo sapiens | sodium voltage-gated channel alpha subunit 4(SCN4A) |
SCN2A | 6326 | Homo sapiens | sodium voltage-gated channel alpha subunit 2(SCN2A) |
SCN4B | 6330 | Homo sapiens | sodium voltage-gated channel beta subunit 4(SCN4B) |
SCN2B | 6327 | Homo sapiens | sodium voltage-gated channel beta subunit 2(SCN2B) |
表2奥卡西平25种关键靶基因ID信息表
靶基因 | 靶基因ID | 物种 | 靶基因全称 |
---|---|---|---|
ABCB1 | 5243 | Homo sapiens | ATP binding cassette subfamily B member 1(ABCB1) |
CYP2C19 | 1557 | Homo sapiens | cytochrome P450 family 2 subfamily C member 19(CYP2C19) |
CYP3A4 | 1576 | Homo sapiens | cytochrome P450 family 3 subfamily A member 4(CYP3A4) |
CYP3A5 | 1577 | Homo sapiens | cytochrome P450 family 3 subfamily A member 5(CYP3A5) |
SCN11A | 11280 | Homo sapiens | sodium voltage-gated channel alpha subunit 11(SCN11A) |
SCN9A | 6335 | Homo sapiens | sodium voltage-gated channel alpha subunit 9(SCN9A) |
SCN7A | 6332 | Homo sapiens | sodium voltage-gated channel alpha subunit 7(SCN7A) |
SCN5A | 6331 | Homo sapiens | sodium voltage-gated channel alpha subunit 5(SCN5A) |
SCN3B | 55800 | Homo sapiens | sodium voltage-gated channel beta subunit 3(SCN3B) |
SCN3A | 6328 | Homo sapiens | sodium voltage-gated channel alpha subunit 3(SCN3A) |
SCN1B | 6324 | Homo sapiens | sodium voltage-gated channel beta subunit 1(SCN1B) |
CBR3 | 874 | Homo sapiens | carbonyl reductase 3(CBR3) |
SCN1A | 6323 | Homo sapiens | sodium voltage-gated channel alpha subunit 1(SCN1A) |
CBR1 | 873 | Homo sapiens | carbonyl reductase 1(CBR1) |
AKR1C1 | 1645 | Homo sapiens | aldo-keto reductase family 1 member C1(AKR1C1) |
AKR1C3 | 8644 | Homo sapiens | aldo-keto reductase family 1 member C3(AKR1C3) |
AKR1C2 | 1646 | Homo sapiens | aldo-keto reductase family 1 member C2(AKR1C2) |
AKR1C4 | 1109 | Homo sapiens | aldo-keto reductase family 1 member C4(AKR1C4) |
SCN10A | 6336 | Homo sapiens | sodium voltage-gated channel alpha subunit 10(SCN10A) |
SCN8A | 6334 | Homo sapiens | sodium voltage-gated channel alpha subunit 8(SCN8A) |
ALB | 213 | Homo sapiens | albumin(ALB) |
SCN4A | 6329 | Homo sapiens | sodium voltage-gated channel alpha subunit 4(SCN4A) |
SCN2A | 6326 | Homo sapiens | sodium voltage-gated channel alpha subunit 2(SCN2A) |
SCN4B | 6330 | Homo sapiens | sodium voltage-gated channel beta subunit 4(SCN4B) |
SCN2B | 6327 | Homo sapiens | sodium voltage-gated channel beta subunit 2(SCN2B) |
靶基因 | 靶基因ID | 染色体位置 | 起始位置 | 终止位置 | SNP数量 | 样本量 | P值相关统计量 | P |
---|---|---|---|---|---|---|---|---|
SCN1A | 6 323 | 2 | 166835670 | 167040642 | 507 | 38 017 | 6.025 | < 0.001 |
SCN9A | 6 335 | 2 | 167041695 | 167267497 | 519 | 37 621 | 3.253 | < 0.001 |
SCN7A | 6 332 | 2 | 167250083 | 167378481 | 268 | 37 555 | 1.793 | 0.015 |
SCN3B | 55 800 | 11 | 123489895 | 123560315 | 185 | 37 870 | 1.742 | 0.017 |
SCN11A | 11 280 | 3 | 38877260 | 39030136 | 283 | 38 190 | 1.441 | 0.036 |
SCN10A | 6 336 | 3 | 38728837 | 38870501 | 328 | 37 505 | 1.231 | 0.049 |
SCN1B | 6 324 | 19 | 35486555 | 35541353 | 10 | 35 245 | 1.053 | 0.085 |
CYP2C19 | 1 557 | 10 | 96487463 | 96622671 | 285 | 38 149 | 1.020 | 0.090 |
SCN5A | 6 331 | 3 | 38579553 | 38726164 | 242 | 37 201 | 0.788 | 0.103 |
CYP3A4 | 1 576 | 7 | 99344583 | 99416811 | 29 | 35 626 | 0.848 | 0.126 |
SCN3A | 6 328 | 2 | 165934030 | 166095577 | 207 | 37 801 | 0.626 | 0.161 |
AKR1C4 | 1 109 | 10 | 5203798 | 5270910 | 67 | 37 208 | 0.605 | 0.174 |
SCN2A | 6 326 | 2 | 165951659 | 166258820 | 558 | 37 979 | 0.252 | 0.240 |
AKR1C3 | 8 644 | 10 | 5055958 | 5159878 | 99 | 37 111 | 0.341 | 0.246 |
CBR3 | 874 | 21 | 37471614 | 37528860 | 171 | 37 292 | 0.158 | 0.301 |
ALB | 213 | 4 | 74234972 | 74297129 | 108 | 37 318 | 0.187 | 0.304 |
ABCB1 | 5 243 | 7 | 87123179 | 87377639 | 361 | 37 714 | -0.123 | 0.390 |
SCN2B | 6 327 | 11 | 118023519 | 118082337 | 120 | 37 475 | -0.181 | 0.431 |
AKR1C1 | 1 645 | 10 | 4970454 | 5030158 | 101 | 37 608 | -0.233 | 0.458 |
SCN4A | 6 329 | 17 | 62005914 | 62101876 | 44 | 37 450 | -0.487 | 0.560 |
AKR1C2 | 1 646 | 10 | 5019967 | 5095225 | 2 | 36 830 | -0.477 | 0.569 |
CYP3A5 | 1 577 | 7 | 99235813 | 99312636 | 65 | 37 588 | -0.823 | 0.706 |
CBR1 | 873 | 21 | 37407285 | 37455462 | 120 | 37 458 | -0.993 | 0.736 |
SCN4B | 6 330 | 11 | 117994092 | 118058630 | 91 | 37 352 | -1.004 | 0.742 |
SCN8A | 6 334 | 12 | 51949050 | 52216648 | 272 | 37 199 | -1.788 | 0.926 |
表3奥卡西平靶基因与癫痫GWAS关联分析
靶基因 | 靶基因ID | 染色体位置 | 起始位置 | 终止位置 | SNP数量 | 样本量 | P值相关统计量 | P |
---|---|---|---|---|---|---|---|---|
SCN1A | 6 323 | 2 | 166835670 | 167040642 | 507 | 38 017 | 6.025 | < 0.001 |
SCN9A | 6 335 | 2 | 167041695 | 167267497 | 519 | 37 621 | 3.253 | < 0.001 |
SCN7A | 6 332 | 2 | 167250083 | 167378481 | 268 | 37 555 | 1.793 | 0.015 |
SCN3B | 55 800 | 11 | 123489895 | 123560315 | 185 | 37 870 | 1.742 | 0.017 |
SCN11A | 11 280 | 3 | 38877260 | 39030136 | 283 | 38 190 | 1.441 | 0.036 |
SCN10A | 6 336 | 3 | 38728837 | 38870501 | 328 | 37 505 | 1.231 | 0.049 |
SCN1B | 6 324 | 19 | 35486555 | 35541353 | 10 | 35 245 | 1.053 | 0.085 |
CYP2C19 | 1 557 | 10 | 96487463 | 96622671 | 285 | 38 149 | 1.020 | 0.090 |
SCN5A | 6 331 | 3 | 38579553 | 38726164 | 242 | 37 201 | 0.788 | 0.103 |
CYP3A4 | 1 576 | 7 | 99344583 | 99416811 | 29 | 35 626 | 0.848 | 0.126 |
SCN3A | 6 328 | 2 | 165934030 | 166095577 | 207 | 37 801 | 0.626 | 0.161 |
AKR1C4 | 1 109 | 10 | 5203798 | 5270910 | 67 | 37 208 | 0.605 | 0.174 |
SCN2A | 6 326 | 2 | 165951659 | 166258820 | 558 | 37 979 | 0.252 | 0.240 |
AKR1C3 | 8 644 | 10 | 5055958 | 5159878 | 99 | 37 111 | 0.341 | 0.246 |
CBR3 | 874 | 21 | 37471614 | 37528860 | 171 | 37 292 | 0.158 | 0.301 |
ALB | 213 | 4 | 74234972 | 74297129 | 108 | 37 318 | 0.187 | 0.304 |
ABCB1 | 5 243 | 7 | 87123179 | 87377639 | 361 | 37 714 | -0.123 | 0.390 |
SCN2B | 6 327 | 11 | 118023519 | 118082337 | 120 | 37 475 | -0.181 | 0.431 |
AKR1C1 | 1 645 | 10 | 4970454 | 5030158 | 101 | 37 608 | -0.233 | 0.458 |
SCN4A | 6 329 | 17 | 62005914 | 62101876 | 44 | 37 450 | -0.487 | 0.560 |
AKR1C2 | 1 646 | 10 | 5019967 | 5095225 | 2 | 36 830 | -0.477 | 0.569 |
CYP3A5 | 1 577 | 7 | 99235813 | 99312636 | 65 | 37 588 | -0.823 | 0.706 |
CBR1 | 873 | 21 | 37407285 | 37455462 | 120 | 37 458 | -0.993 | 0.736 |
SCN4B | 6 330 | 11 | 117994092 | 118058630 | 91 | 37 352 | -1.004 | 0.742 |
SCN8A | 6 334 | 12 | 51949050 | 52216648 | 272 | 37 199 | -1.788 | 0.926 |
1 | Beydoun A, DuPont S, Zhou D, et al. Current role of carbamazepine and oxcarbazepine in the management of epilepsy[J]. Seizure, 2020, 83: 251. |
2 | Chen CY, Zhou Y, Cui YM, et al. Population pharmacokinetics and dose simulation of oxcarbazepine in Chinese paediatric patients with epilepsy[J]. J Clin Pharm Ther, 2019, 44(2): 300. |
3 | Myers CT, Mefford HC. Advancing epilepsy genetics in the genomic era[J]. Genome Med, 2015, 7(1): 91. |
4 | Dehghan A. Genome-wide association studies[J]. Methods Mol Biol, 2018, 1793: 37. |
5 | Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: a major update to the DrugBank database for 2018[J]. Nucleic Acids Res, 2018, 46(D1): D1074. |
6 | Wishart DS, Knox C, Guo AC, et al. DrugBank: a comprehensive resource forin silicodrug discovery and exploration[J]. Nucleic Acids Res, 2006, 34(Suppl-1): D668. |
7 | Huang DW, Sherman BT, Tan QN, et al. David bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists[J]. Nucleic Acids Res, 2007, 35(Suppl-2): W169. |
8 | Bagnall RD, Crompton DE, Petrovski S, et al. Exome-based analysis of cardiac arrhythmia, respiratory control, and epilepsy genes in sudden unexpected death in epilepsy[J]. Ann Neurol, 2016, 79(4): 522. |
9 | Epi 4 K consortium; Epilepsy Phenome/Genome Project. Ultra-rare genetic variation in common epilepsies: a case-control sequencing study[J]. Lancet Neurol, 2017, 16(2): 135. |
10 | Escayg A, Goldin AL. Sodium Channel SCN1A and epilepsy: mutations and mechanisms[J]. Epilepsia, 2010, 51(9): 1650. |
11 | Brodie MJ. Sodium channel blockers in the treatment of epilepsy[J]. CNS Drugs, 2017, 31(7): 527. |
12 | Brodie MJ, Mintzer S, Pack AM, et al. Enzyme induction with antiepileptic drugs: cause for concern?[J]. Epilepsia, 2013, 54(1): 11. |
13 | Fang ZX, Hong SQ, Li TS, et al. Genetic and phenotypic characteristics of SCN1A-related epilepsy in Chinese children[J]. Neuroreport, 2019, 30(9): 671. |
14 | Scheffer IE, Nabbout R. SCN1A-related phenotypes: epilepsy and beyond[J]. Epilepsia, 2019, 60(Suppl-3): S17. |
15 | Connolly MB. Dravet syndrome: diagnosis and long-term course[J]. Can J Neurol Sci, 2016, 43(Suppl-3): S3. |
16 | Zhang B, Li M, Wang LJ, et al. The association between the polymorphisms in a sodium channel gene SCN7A and essential hypertension: a case-control study in the northern Han Chinese[J]. Ann Hum Genet, 2015, 79(1): 28. |
17 | Gorter JA, Zurolo E, Iyer A, et al. Induction of sodium channel Nax(SCN7A) expression in rat and human hippocampus in temporal lobe epilepsy[J]. Epilepsia, 2010, 51(9): 1791. |
18 | Fasham J, Leslie JS, Harrison JW, et al. No association between SCN9A and monogenic human epilepsy disorders[J]. Plos Genet, 2020, 16(11): e1009161. |
19 | Ding J, Zhang JW, Guo YX, et al. Novel mutations in SCN9A occurring with fever-associated seizures or epilepsy[J]. Seizure, 2019, 71: 214. |
20 | Han CY, Huang JY, Waxman SG. Sodium channel Nav1.8: emerging links to human disease[J]. Neurology, 2016, 86(5): 473. |
21 | Kambouris M, Thevenon J, Soldatos A, et al. BiallelicSCN10Amutations in neuromuscular disease and epileptic encephalopathy[J]. Ann Clin Transl Neurol, 2017, 4(1): 26. |
22 | Kerr NCH, Holmes FE, Wynick D. Novel isoforms of the sodium channels Nav1.8 and Nav1.5 are produced by a conserved mechanism in mouse and rat[J]. J Biol Chem, 2004, 279(23): 24826. |
23 | Xiao YC, Barbosa C, Pei ZF, et al. Increased resurgent Sodium currents in Nav1.8 contribute to nociceptive sensory neuron hyperexcitability associated with peripheral neuropathies[J]. J Neurosci, 2019, 39(8): 1539. |
24 | Dib-Hajj SD, Tyrrell L, Waxman SG. Structure of the sodium channel gene SCN11A: evidence for intron-to-exon conversion model and implications for gene evolution[J]. Mol Neurobiol, 2002, 26(2/3): 235. |
25 | Leng XR, Qi XH, Zhou YT, et al. Gain-of-function mutation p.Arg225Cys in SCN11A causes familial episodic pain and contributes to essential tremor[J]. J Hum Genet, 2017, 62(6): 641. |
26 | Zhou Y, Luo ZH, Bi FF, et al. Expression of Nav1.5 in the pathogenesis of temporal lobe epilepsy[J]. Cell Mol Biol (Noisy-le-grand), 2019, 65(2): 58. |
27 | Ishikawa T, Takahashi N, Ohno S, et al. Novel SCN3B mutation associated with brugada syndrome affects intracellular trafficking and function of Nav1.5[J]. Circ J, 2013, 77(4): 959. |
28 | Lu Y, Yu WH, Xi ZQ, et al. Mutational analysis of SCN2B, SCN3B and SCN4B in a large Chinese Han family with generalized tonic-clonic seizure[J]. Neurol Sci, 2010, 31(5): 675. |
29 | Stephens DN, King SL, Lambert JJ, et al. GABAAreceptor subtype involvement in addictive behaviour[J]. Genes Brain Behav, 2017, 16(1): 149. |
30 | Dibbens LM, Harkin LA, Richards M, et al. The role of neuronal GABAAreceptor subunit mutations in idiopathic generalized epilepsies[J]. Neurosci Lett, 2009, 453(3): 162. |
31 | Golas MM. Human cellular models of medium spiny neuron development and Huntington disease[J]. Life Sci, 2018, 209: 179. |
32 | Deutch AY, Colbran RJ, Winder DJ. Striatal plasticity and medium spiny neuron dendritic remodeling in parkinsonism[J]. Parkinsonism Relat Disord, 2007, 13(Suppl-3): S251. |
[1] | 戚孟琪, 吕玉芹, 高蕾, 张敬军.基于生物信息学方法探究布瓦西坦抗癫痫机制[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(6): 401-407. |
[2] | 陈玥, 佘婧瑶, 陈思, 曹莹, 梁春云, 卢燕, 王佩娟, 公真.E2F转录因子家族在宫颈癌中的表达及其与临床预后的关系[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(3): 215-223. |
[3] | 黄永胜, 黄彩娜, 董学岭, 卓秀丽, 房娟娟, 宋文霞, 张雨露, 阎磊, 陈刚, 吕仁广.膀胱尿路上皮癌蛋白组学相关个体化预后特征的推导与验证[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(1): 15-23. |
[4] | 卜文超, 曾宪智, 关云茜, 谢思源, 陈世新, 汤挺兵, 曹明国.SOCS基因家族在肝细胞癌中的表达及生物信息学分析[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(10): 740-747. |
[5] | 徐雯, 张敬军.大麻二酚治疗癫痫的研究进展[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(1): 74-77. |
[6] | 康慧, 张敬军.转录组测序技术在癫痫诊疗中的应用[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(1): 70-73. |
[7] | 王君峰.小剂量托吡酯联合卡马西平治疗小儿癫痫的临床疗效及安全性[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(1): 53-55. |
[8] | 戚孟琪, 吕玉芹, 徐雯, 张敬军.腺苷与癫痫发病机制研究[J]. betway必威登陆网址 (betway.com )学报, 2021, 42(9): 713-716. |
[9] | 高敏, 李振义, 吴月鹏, 张敬军.不同脑叶癫痫发作类型的差异研究[J]. betway必威登陆网址 (betway.com )学报, 2021, 42(7): 521-524. |
[10] | 吕玉芹, 高蕾, 徐雯, 戚孟琪, 张敬军.颞叶癫痫差异发作频率相关生物通路及蛋白-蛋白相互作用网络分析[J]. betway必威登陆网址 (betway.com )学报, 2021, 42(7): 508-515. |
[11] | 王娜, 张敬军.电压门控钠离子通道与相关癫痫研究[J]. betway必威登陆网址 (betway.com )学报, 2021, 42(10): 792-796. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||