Journal of ShanDong First Medical University&ShanDong Academy of Medical Sciences››2024,Vol. 45››Issue (7): 385-390.DOI:10.3969/j.issn.2097-0005.2024.07.001

• Basic Researches •

Multi-index optimization of Hantaoye micro-pills based on Box-Behnken response surface method combined with BP neural network

Yongxiang MU, Chuncai ZOU(), Haiyan YAN()

  1. School of Pharmacy,Wannan Medicine College,Wuhu 241002,China
  • Received:2024-05-10Online:2024-07-25Published:2024-08-22
  • Contact:Chuncai ZOU, Haiyan YAN

基于Box-Behnken响应面法结合BP神经网络多指标优化汉桃叶微丸的制备工艺

木永祥, 邹纯才(), 鄢海燕()

  1. 皖南医学院药学院,安徽 芜湖 241002
  • 通讯作者:邹纯才,鄢海燕
  • 基金资助:
    安徽高校省级自然betway必威亚洲 重大项目(KJ2016SD60);安徽省高等学校省级质量工程一流教材建设项目《药物分析试验教程》(2020yljc129);皖南医学院药剂学一流本科课程(2019ylkc017);安徽省省级质量工程项目药剂学(2019kfkc084)

Abstract:

ObjectiveThe Box-Behnken response surface methodology combined with BP neural network was used to optimize the preparation process of Hantaoye micropills.Methodspreparation of micropills of Hantaoye by extrusion rounding method was utilized, based on the one-way test,the ratio of micronized silica gel to MCC, wetting agent, loading capacity, rounding frequency and rounding time of excipients were examined as factors,and yield(%), roundness, HR (hausner ratio) and brittleness(%) are used as evaluation indexs, based on G1-entropy weighting method, the evaluation indexs are combined and the comprehensive evaluation results are calculate-d, so as to optimize the prescription composition and its preparetion process, and a BP neural netw-ork model was established to select reasonable date for learning and validating and predicting theoptimal preparation process of Hantaoye micropills.ResultsThe optimum process for the preparation of Hantaoye micropills predicted by Box-Behnken response surface methododology and BP neural network was 1∶3(g∶g) ratio of micronized silica gel to MCC, 25% drug loading, and 22 round-ing frequency. The results of the validation test show that the absolute error of the mean value of the comprehensive evaluation results of the Box-Behnken response surface method with the theoretical value of the response surface optimization is 0.007 7, and the relative error is 0.79%.nse surface method combined with BP neural network multi-indicator optimization is stable, feasi-ble and more reasonable.ConclusionThe preparation process of Hantao leaf micro-pills based on Box-Behnken response.

Key words:Schefflera arboricolaHayata,G1-entropy weighting method,Box-Behnken response surface method,BP neural network,multi indexs optimization

摘要:

目的采用Box-Behnken响应面法结合BP(back-propagation)神经网络多指标优化汉桃叶微丸的制备工艺。方法利用挤出滚圆法制备汉桃叶微丸,在单因素试验的基础上,以辅料微粉硅胶与微晶纤维素(microcrystalline cellulose,MCC)的比例、润湿剂、载药量、滚圆频率和滚圆时间为考察因素,以收率(%)、圆整度、豪斯纳比(hausner ratio,HR)和脆碎度(%)为评价指标,基于G1-熵权法对各评价指标进行组合赋权并计算综合评价结果,从而优化处方组成及其制备工艺;建立BP神经网络模型,选取合理数据进行学习和验证并预测汉桃叶微丸的最佳制备工艺。结果采用Box-Behnken响应面法及BP神经网络预测的汉桃叶微丸的最佳制备工艺为微粉硅胶与MCC的比例为1∶3(g∶g)、载药量为25%、滚圆频率为22 Hz。验证试验的结果表明,Box-Behnken响应面法的综合评价结果均值与响应面优化理论值的绝对误差为0.007 7,相对误差为0.79%。结论基于Box-Behnken响应面法结合BP神经网络多指标优化的汉桃叶微丸的制备工艺稳定可行、较为合理。

关键词:汉桃叶,G1-熵权法,Box-Behnken响应面法,BP神经网络,多指标优化