betway必威登陆网址 (betway.com )学报››2024,Vol. 45››Issue (4): 241-250.DOI:10.3969/j.issn.2097-0005.2024.04.010
收稿日期:
2023-12-12出版日期:
2024-04-25发布日期:
2024-05-22通讯作者:
杨正武Danpeng ZHANG1, Peng YANG2, Zhengwu YANG2()
Received:
2023-12-12Online:
2024-04-25Published:
2024-05-22Contact:
Zhengwu YANG摘要:
2020年国际专家小组建议将非酒精性脂肪性肝病更名为代谢功能障碍相关脂肪性肝病(metabolic dysfunction associated fatty liver disease,MAFLD),并提出一套新的诊断标准。MAFLD的病理生理机制涉及环境、遗传、代谢以及肠道微生物等多种因素。肠道微生物来源的代谢物可能在MAFLD的发生发展中发挥重要作用。本文对胆汁酸、短链脂肪酸、色氨酸、胆碱、内毒素和乙醇作为肠道菌群代谢物导致MAFLD发展的机制以及相关治疗进展进行综述。
张丹芃, 杨鹏, 杨正武. 肠道菌群及代谢物对代谢功能障碍相关脂肪性肝病的影响[J]. betway必威登陆网址 (betway.com )学报, 2024, 45(4): 241-250.
Danpeng ZHANG, Peng YANG, Zhengwu YANG. Effects of gut microbiome and metabolites on metabolic dysfunction associated fatty liver disease[J]. Journal of ShanDong First Medical University&ShanDong Academy of Medical Sciences, 2024, 45(4): 241-250.
图1肠道菌群代谢物在代谢功能障碍相关脂肪性肝病中的作用TMA为三甲胺;TMAO为三甲胺-N-氧化物;BA为胆汁酸;FXR为法尼醇X受体;FGF19为成纤维细胞生长因子19;CYP7A1为胆固醇7α-羟化酶1;SHP为小异源二聚体伴侣;VLDL为极低密度脂蛋白;TLR4为Toll样受体4;NF-ĸB为核因子-ĸB;TGR5为Takeda G蛋白耦联胆汁酸受体5;GLP-1为胰高血糖素样肽-1;SCFAs为短链脂肪酸;PPARγ为过氧化物酶体增殖物激活受体γ;AMPK为AMP活化蛋白激酶;GPR为G蛋白偶联受体;IDs为吲哚衍生物;AHR为芳香烃受体;PAMPs为病原体相关分子模式分子。
作者 | 研究对象 | 处理措施 | 研究结论 |
---|---|---|---|
Jadhav等[
|
野生型及基因敲除小鼠 | INT-767(FXR和TGR5的半合成激动剂),12周 | 逆转了HFD诱导的肥胖、动脉粥样硬化和非酒精性脂肪性肝病的发展 |
Harrison等[
|
非酒精性脂肪性肝炎患者 | MET 409(FXR激动剂),12周 | 肝脏脂肪含量降低 |
Loomba等[
|
桥接纤维化和肝硬化患者 | cilofexor(FXR激动剂)联合firsocostat治疗,48周 | 非酒精性脂肪性肝病活动性评分降低,ALT、AST、胆红素、胆汁酸降低,瞬时弹性成像肝硬度降低 |
Sanyal等[
|
非酒精性脂肪性肝炎且无糖尿病的成年人 | 吡格列酮(PPARγ激活剂)30mg/d, 96周 | ALT、AST降低,肝脂肪变性和小叶炎症改善 |
Boyer-Diaz等[
|
硫代乙酰胺诱导的肝硬化大鼠 | Lanifibranor(泛PPAR激动剂)100 mg/(kg·d),2周 | 门静脉压力降低,肝纤维化消退 |
Francque等[
|
活动性非酒精性脂肪性肝炎患者 | Lanifibranor(泛PPAR激动剂)1 200 mg,24周 | 活动性评分降低≥ 2的患者百分比显著高于安慰剂组 |
Kim等[
|
非酒精性脂肪性肝炎小鼠 | GLP-1/GLP-2受体双重激动剂,4周 | BMI、血糖、肝甘油三酯降低, 肝纤维化和肠道屏障通透性改善 |
Armstrong等[
|
非酒精性脂肪性肝炎患者 | 利拉鲁肽1.8 mg/d,48周 | 非酒精性脂肪性肝炎缓解 |
Bakhshimoghaddam等[
|
非酒精性脂肪性肝病患者 | 300 g/d合生元酸奶,24周 | 肝脂肪变性改善,ALT、AST、ALP、GGT降低 |
Mohamad Nor等[
|
非酒精性脂肪性肝病患者 | 多菌株益生菌,6个月 | 肝脂肪变性和纤维化水平没有变化,ALT、总胆固醇、甘油三酯没有差异,但能稳定肠道黏膜免疫功能并避免肠道通透性增加 |
Xue等[
|
非酒精性脂肪性肝病患者 | 脂肪细胞因子,3次,3天 | 1月后肝脏脂肪衰减值降低,肠道微生物群丰度改善,拟杆菌/厚壁菌比率升高 |
Rocha等[
|
非酒精性脂肪性肝病患者 | 可溶性纤维10 g/d,3个月 | 75%的患者肝酶降低 |
Hald等[
|
代谢综合征患者 | 富含2种膳食纤维的饮食,4周 | 双歧杆菌比例升高 |
Motiani等[
|
久坐不动的中年胰岛素抵抗患者 | 冲刺间歇训练或中等强度持续训练, 6次/周,2周 | 肿瘤坏死因子α降低,肠道炎症标志物降低;厚壁菌门/拟杆菌门比率降低,拟杆菌门增多 |
Petit等[
|
控制不良的T2DM患者 | 利拉鲁肽(GLP-1激动剂)1.2 mg/d, 6个月 | 体质量、肝脏脂肪含量降低 |
Siew-C等[
|
肥胖T2DM 患者 | 脂肪细胞因子联合生活方式干预, 4次/周,12周 | 24周后总胆固醇、低密度脂蛋白胆固醇、肝脏硬度降低 |
Craven等[
|
非酒精性脂肪性肝病患者 | 同种异体或同种自体脂肪细胞因子 | 胰岛素抵抗、肝质子密度脂肪分数均无变化,6周后同种异体脂肪细胞因子患者肠道通透性降低 |
表1MAFLD相关治疗证据
作者 | 研究对象 | 处理措施 | 研究结论 |
---|---|---|---|
Jadhav等[
|
野生型及基因敲除小鼠 | INT-767(FXR和TGR5的半合成激动剂),12周 | 逆转了HFD诱导的肥胖、动脉粥样硬化和非酒精性脂肪性肝病的发展 |
Harrison等[
|
非酒精性脂肪性肝炎患者 | MET 409(FXR激动剂),12周 | 肝脏脂肪含量降低 |
Loomba等[
|
桥接纤维化和肝硬化患者 | cilofexor(FXR激动剂)联合firsocostat治疗,48周 | 非酒精性脂肪性肝病活动性评分降低,ALT、AST、胆红素、胆汁酸降低,瞬时弹性成像肝硬度降低 |
Sanyal等[
|
非酒精性脂肪性肝炎且无糖尿病的成年人 | 吡格列酮(PPARγ激活剂)30mg/d, 96周 | ALT、AST降低,肝脂肪变性和小叶炎症改善 |
Boyer-Diaz等[
|
硫代乙酰胺诱导的肝硬化大鼠 | Lanifibranor(泛PPAR激动剂)100 mg/(kg·d),2周 | 门静脉压力降低,肝纤维化消退 |
Francque等[
|
活动性非酒精性脂肪性肝炎患者 | Lanifibranor(泛PPAR激动剂)1 200 mg,24周 | 活动性评分降低≥ 2的患者百分比显著高于安慰剂组 |
Kim等[
|
非酒精性脂肪性肝炎小鼠 | GLP-1/GLP-2受体双重激动剂,4周 | BMI、血糖、肝甘油三酯降低, 肝纤维化和肠道屏障通透性改善 |
Armstrong等[
|
非酒精性脂肪性肝炎患者 | 利拉鲁肽1.8 mg/d,48周 | 非酒精性脂肪性肝炎缓解 |
Bakhshimoghaddam等[
|
非酒精性脂肪性肝病患者 | 300 g/d合生元酸奶,24周 | 肝脂肪变性改善,ALT、AST、ALP、GGT降低 |
Mohamad Nor等[
|
非酒精性脂肪性肝病患者 | 多菌株益生菌,6个月 | 肝脂肪变性和纤维化水平没有变化,ALT、总胆固醇、甘油三酯没有差异,但能稳定肠道黏膜免疫功能并避免肠道通透性增加 |
Xue等[
|
非酒精性脂肪性肝病患者 | 脂肪细胞因子,3次,3天 | 1月后肝脏脂肪衰减值降低,肠道微生物群丰度改善,拟杆菌/厚壁菌比率升高 |
Rocha等[
|
非酒精性脂肪性肝病患者 | 可溶性纤维10 g/d,3个月 | 75%的患者肝酶降低 |
Hald等[
|
代谢综合征患者 | 富含2种膳食纤维的饮食,4周 | 双歧杆菌比例升高 |
Motiani等[
|
久坐不动的中年胰岛素抵抗患者 | 冲刺间歇训练或中等强度持续训练, 6次/周,2周 | 肿瘤坏死因子α降低,肠道炎症标志物降低;厚壁菌门/拟杆菌门比率降低,拟杆菌门增多 |
Petit等[
|
控制不良的T2DM患者 | 利拉鲁肽(GLP-1激动剂)1.2 mg/d, 6个月 | 体质量、肝脏脂肪含量降低 |
Siew-C等[
|
肥胖T2DM 患者 | 脂肪细胞因子联合生活方式干预, 4次/周,12周 | 24周后总胆固醇、低密度脂蛋白胆固醇、肝脏硬度降低 |
Craven等[
|
非酒精性脂肪性肝病患者 | 同种异体或同种自体脂肪细胞因子 | 胰岛素抵抗、肝质子密度脂肪分数均无变化,6周后同种异体脂肪细胞因子患者肠道通透性降低 |
1 | Ahmed A, Wong RJ, Harrison SA. Nonalcoholic fatty liver disease review: diagnosis, treatment, and outcomes[J].Clin Gastroenterol Hepatol,2015,13(12): 2062. |
2 | Li J, Zou BY, Yeo YH, et al. Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999-2019: a systematic review and meta-analysis[J].Lancet Gastroenterol Hepatol,2019,4(5): 389. |
3 | 杨蕊旭, 范建高. 非酒精性脂肪性肝病新认识与再更名[J].临床肝胆病杂志,2023,39(8): 1775. |
4 | Eslam M, Newsome PN, Sarin SK, et al. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement[J].J Hepatol,2020,73(1): 202. |
5 | 范建高, 金倩. 代谢相关脂肪性肝病更名的困境与挑战[J].西南医科大学学报,2022,45(5): 373. |
6 | Vallianou N, Liu JL, Dalamaga M. What are the key points in the association between the gut microbiome and nonalcoholic fatty liver disease?[J].Metabol Open,2019,1: 9. |
7 | Tilg H, Adolph TE, Trauner M. Gut-liver axis: pathophysiological concepts and clinical implications[J].Cell Metab,2022,34(11): 1700. |
8 | Boursier J, Mueller O, Barret M, et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota[J].Hepatology,2016,63(3): 764. |
9 | Aron-Wisnewsky J, Vigliotti C, Witjes J, et al. Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders[J].Nat Rev Gastroenterol Hepatol,2020,17(5): 279. |
10 | Ma J, Li JL, Jin C, et al. Association of gut microbiome and primary liver cancer: a two-sample Mendelian randomization and case-control study[J].Liver Int,2023,43(1): 221. |
11 | Lang S, Schnabl B. Microbiota and fatty liver disease-the known, the unknown, and the future[J].Cell Host Microbe,2020,28(2): 233. |
12 | 段元青, 牛惠, 张新焕, 等. 肠道菌群与青少年肥胖相关性研究进展[J].betway必威登陆网址 (betway.com 学报),2022,43(12): 958. |
13 | Marra F, Svegliati-Baroni G. Lipotoxicity and the gut-liver axis in NASH pathogenesis[J].J Hepatol,2018,68(2): 280. |
14 | Kuziel GA, Rakoff-Nahoum S. The gut microbiome[J].Curr Biol,2022,32(6): R257. |
15 | Demirci M, Bahar Tokman H, Taner Z, et al.BacteroidetesandFirmicuteslevels in gut microbiota and effects of hosts TLR2/TLR4 gene expression levels in adult type 1 diabetes patients in Istanbul, Turkey[J].J Diabetes Complications,2020,34(2): 107449. |
16 | Huang Y, Li SC, Hu J, et al. Gut microbiota profiling in Han Chinese with type 1 diabetes[J].Diabetes Res Clin Pract,2018,141: 256. |
17 | Chávez-Carbajal A, Pizano-Zárate ML, Hernández-Quiroz F, et al. Characterization of the gut microbiota of individuals at different T2D stages reveals a complex relationship with the host[J].Microorganisms,2020,8(1): 94. |
18 | Zaky A, Glastras SJ, Wong MYW, et al. The role of the gut microbiome in diabetes and obesity-related kidney disease[J].Int J Mol Sci,2021,22(17): 9641. |
19 | Doumatey AP, Adeyemo A, Zhou J, et al. Gut microbiome profiles are associated with type 2 diabetes in urban africans[J].Front Cell Infect Microbiol,2020,10: 63. |
20 | Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity[J].Gastroenterology,2009,137(5): 1716. |
21 | Rebersek M. Gut microbiome and its role in colorectal cancer[J].BMC Cancer,2021,21(1): 1325. |
22 | Du Y, Li XX, Su CY, et al. Butyrate protects against high-fat diet-induced atherosclerosis via up-regulating ABCA1 expression in apolipoprotein E-deficiency mice[J].Br J Pharmacol,2020,177(8): 1754. |
23 | Wang CH, Zhu CP, Shao LM, et al. Role of bile acids in dysbiosis and treatment of nonalcoholic fatty liver disease[J].Mediators Inflamm,2019,2019: 7659509. |
24 | Jiang L, Zhang H, Xiao D, et al. Farnesoid X receptor (FXR): structures and ligands[J].Comput Struct Biotechnol J,2021,19: 2148. |
25 | Chu HK, Duan Y, Yang L, et al. Small metabolites, possible big changes: a microbiota-centered view of non-alcoholic fatty liver disease[J].Gut,2019,68(2): 359. |
26 | Sayin SI, Wahlström A, Felin J, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist[J].Cell Metab,2013,17(2): 225. |
27 | Ralli T, Saifi Z, Tyagi N, et al. Deciphering the role of gut metabolites in non-alcoholic fatty liver disease[J].Crit Rev Microbiol,2023,49(6): 815. |
28 | Sinal CJ, Tohkin M, Miyata M, et al. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis[J].Cell,2000,102(6): 731. |
29 | Vallianou N, Christodoulatos GS, Karampela I, et al. Understanding the role of the gut microbiome and microbial metabolites in non-alcoholic fatty liver disease: current evidence and perspectives[J].Biomolecules,2021,12(1): 56. |
30 | Chen JZ, Vitetta L. Gut microbiota metabolites in NAFLD pathogenesis and therapeutic implications[J].Int J Mol Sci,2020,21(15): 5214. |
31 | Puri P, Daita K, Joyce A, et al. The presence and severity of nonalcoholic steatohepatitis is associated with specific changes in circulating bile acids[J].Hepatology,2018,67(2): 534. |
32 | Kasai Y, Kessoku T, Tanaka K, et al. Association of serum and fecal bile acid patterns with liver fibrosis in biopsy-proven nonalcoholic fatty liver disease: an observational study[J].Clin Transl Gastroenterol,2022,13(7): e00503. |
33 | Wang WJ, Zhao JF, Gui WF, et al. Tauroursodeoxycholic acid inhibits intestinal inflammation and barrier disruption in mice with non-alcoholic fatty liver disease[J].Br J Pharmacol,2018,175(3): 469. |
34 | Tolhurst G, Heffron H, Lam YS, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2[J].Diabetes,2012,61(2): 364. |
35 | Ge HF, Li XF, Weiszmann J, et al. Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids[J].Endocrinology,2008,149(9): 4519. |
36 | Svegliati-Baroni G, Saccomanno S, Rychlicki C, et al. Glucagon-like peptide-1 receptor activation stimulates hepatic lipid oxidation and restores hepatic signalling alteration induced by a high-fat diet in nonalcoholic steatohepatitis[J].Liver Int,2011,31(9): 1285. |
37 | Martin-Gallausiaux C, Marinelli L, Blottière HM, et al. SCFA: mechanisms and functional importance in the gut[J].Proc Nutr Soc,2021,80(1): 37. |
38 | Zhao S, Jang C, Liu J, et al. Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate[J].Nature,2020,579(7800): 586. |
39 | den Besten G, Lange K, Havinga R, et al. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids[J].Am J Physiol Gastrointest Liver Physiol,2013,305(12): G900. |
40 | Zhang K, Li X, Wang X, et al. Gut barrier proteins mediate liver regulation by the effects of serotonin on the Non-Alcoholic fatty liver disease[J].Curr Protein Pept Sci,2020,21(10): 978. |
41 | Loomba R, Hwang SJ, O'Donnell CJ, et al. Parental obesity and offspring serum alanine and aspartate aminotransferase levels: the Framingham heart study[J].Gastroenterology,2008,134(4): 953. |
42 | Loomba R, Seguritan V, Li WZ, et al. Gut Microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease[J].Cell Metab,2017,25(5): 1054. |
43 | Zhai SX, Qin S, Li LL, et al. Dietary butyrate suppresses inflammation through modulating gut microbiota in high-fat diet-fed mice[J].FEMS Microbiol Lett,2019,366(13): fnz153. |
44 | Zelante TRA, Iannitti RG, Cunha C, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22[J].Immunity,2013,39(2): 372. |
45 | Pernomian L, Duarte-Silva M, de Barros Cardoso CR. The Aryl hydrocarbon receptor (AHR) as a potential target for the control of intestinal inflammation: insights from an immune and bacteria sensor receptor[J].Clin Rev Allergy Immunol,2020,59(3): 382. |
46 | Lamas B, Natividad JM, Sokol H. Aryl hydrocarbon receptor and intestinal immunity[J].Mucosal Immunol,2018,11(4): 1024. |
47 | Fu JH, Ma SX, Li X, et al. Long-term stress with hyperglucocorticoidemia-induced hepatic steatosis with VLDL overproduction is dependent on both 5-HT2 receptor and 5-HT synthesis in liver[J].Int J Biol Sci,2016,12(2): 219. |
48 | Wang LL, Fan XC, Han JC, et al. Gut-derived serotonin contributes to the progression of non-alcoholic steatohepatitis via the liver HTR2A/PPARγ2 pathway[J].Front Pharmacol,2020,11: 553. |
49 | Mehedint MG, Zeisel SH. Choline's role in maintaining liver function: new evidence for epigenetic mechanisms[J].Curr Opin Clin Nutr Metab Care,2013,16(3): 339. |
50 | Stephenson K, Kennedy L, Hargrove L, et al. Updates on dietary models of nonalcoholic fatty liver disease: current studies and insights[J].Gene Expr,2018,18(1): 5. |
51 | Arao Y, Kawai H, Kamimura K, et al. Effect of methionine/choline-deficient diet and high-fat diet-induced steatohepatitis on mitochondrial homeostasis in mice[J].Biochem Biophys Res Commun,2020,527(2): 365. |
52 | Wang ZN, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease[J].Nature,2011,472(7341): 57. |
53 | Chen YM, Liu Y, Zhou RF, et al. Associations of gut-flora-dependent metabolite trimethylamine-N-oxide, betaine and choline with non-alcoholic fatty liver disease in adults[J].Sci Rep,2016,6: 19076. |
54 | Flores-Guerrero JL, Post A, van Dijk PR, et al. Circulating trimethylamine-N-oxide is associated with all-cause mortality in subjects with nonalcoholic fatty liver disease[J].Liver Int,2021,41(10): 2371. |
55 | Zhu WF, Gregory JC, Org E, et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk[J].Cell,2016,165(1): 111. |
56 | Mohamad Nor MH, Ayob N, Mokhtar NM, et al. The effect of probiotics (MCP® BCMC® strains) on hepatic steatosis, small intestinal mucosal immune function, and intestinal barrier in patients with Non-Alcoholic fatty liver disease[J].Nutrients,2021,13(9): 3192. |
57 | Aron-Wisnewsky J, Warmbrunn MV, Nieuwdorp M, et al. Nonalcoholic fatty liver disease: modulating gut microbiota to improve severity?[J].Gastroenterology,2020,158(7): 1881. |
58 | Kim KA, Gu W, Lee IA, et al. High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway[J].PLoS One,2012,7(10): e47713. |
59 | Pendyala S, Walker JM, Holt PR. A high-fat diet is associated with endotoxemia that originates from the gut[J].Gastroenterology,2012,142(5): 1100. |
60 | Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance[J].Diabetes,2007,56(7): 1761. |
61 | Carpino G, Del Ben M, Pastori D, et al. Increased liver localization of lipopolysaccharides in human and experimental NAFLD[J].Hepatology,2020,72(2): 470. |
62 | Harte AL, da Silva NF, Creely SJ, et al. Elevated endotoxin levels in non-alcoholic fatty liver disease[J].J Inflamm (Lond),2010,7: 15. |
63 | Wu RN, Nakatsu G, Zhang X, et al. Pathophysiological mechanisms and therapeutic potentials of macrophages in non-alcoholic steatohepatitis[J].Expert Opin Ther Targets,2016,20(5): 615. |
64 | Henao-Mejia J, Elinav E, Jin CC, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity[J].Nature,2012,482(7384): 179. |
65 | Csak T, Velayudham A, Hritz I, et al. Deficiency in myeloid differentiation factor-2 and toll-like receptor 4 expression attenuates nonalcoholic steatohepatitis and fibrosis in mice[J].Am J Physiol Gastrointest Liver Physiol,2011,300(3): G433. |
66 | Sookoian S, Salatino A, Castaño GO, et al. Intrahepatic bacterial metataxonomic signature in non-alcoholic fatty liver disease[J].Gut,2020,69(8): 1483. |
67 | Valestrand L, Zheng F, Hansen SH, et al. Bile from patients with primary sclerosing cholangitis contains mucosal-associated invariant T-cell antigens[J].Am J Pathol,2022,192(4): 629. |
68 | Zhu LX, Baker SS, Gill C, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH[J].Hepatology,2013,57(2): 601. |
69 | Meijnikman AS, Davids M, Herrema H, et al. Microbiome-derived ethanol in nonalcoholic fatty liver disease[J].Nat Med,2022,28(10): 2100. |
70 | Yuan J, Chen C, Cui JH, et al. Fatty liver disease caused by high-alcohol-producingKlebsiella pneumoniae[J].Cell Metab,2019,30(6): 1172. |
71 | Merra G, Noce A, Marrone G, et al. Influence of Mediterranean diet on human gut microbiota[J].Nutrients,2020,13(1): 7. |
72 | Parry SA, Rosqvist F, Mozes FE, et al. Intrahepatic fat and postprandial glycemia increase after consumption of a Diet enriched in saturated fat compared with free sugars[J].Diabetes Care,2020,43(5): 1134. |
73 | Younossi ZM, Corey KE, Lim JK. Aga clinical practice update on lifestyle modification using Diet and exercise to achieve weight loss in the management of nonalcoholic fatty liver disease: expert review[J].Gastroenterology,2021,160(3): 912. |
74 | Pérez-Montes de Oca A, Julián MT, Ramos A, et al. Microbiota, fiber, and NAFLD: is there any connection?[J].Nutrients,2020,12(10): 3100. |
75 | Campaniello D, Corbo MR, Sinigaglia M, et al. How Diet and physical activity modulate gut microbiota: evidence, and perspectives[J].Nutrients,2022,14(12): 2456. |
76 | Jadhav K, Xu Y, Xu YY, et al. Reversal of metabolic disorders by pharmacological activation of bile acid receptors TGR5 and FXR[J].Mol Metab,2018,9: 131. |
77 | Younossi ZM, Ratziu V, Loomba R, et al. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial[J].Lancet,2019,394(10215): 2184. |
78 | Harrison SA, Bashir MR, Lee KJ, et al. A structurally optimized FXR agonist, Met409, reduced liver fat content over 12 weeks in patients with non-alcoholic steatohepatitis[J].J Hepatol,2021,75(1): 25. |
79 | Loomba R, Noureddin M, Kowdley KV, et al. Combination therapies including cilofexor and firsocostat for bridging fibrosis and cirrhosis attributable to NASH[J].Hepatology,2021,73(2): 625. |
80 | Chianelli D, Rucker PV, Roland J, et al. Nidufexor (LMB763), a novel FXR modulator for the treatment of nonalcoholic steatohepatitis[J].J Med Chem,2020,63(8): 3868. |
81 | Parlati L, Régnier M, Guillou H, et al. New targets for NAFLD[J].JHEP Rep,2021,3(6): 100346. |
82 | Sanyal AJ, Chalasani N, Kowdley KV, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis[J].N Engl J Med,2010,362(18): 1675. |
83 | European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD), European Association for the Study of Obesity (EASO). EASL-EASD-EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease[J].J Hepatol,2016,64(6): 1388. |
84 | Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases[J].Hepatology,2018,67(1): 328. |
85 | Gross B, Pawlak M, Lefebvre P, et al. PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD[J].Nat Rev Endocrinol,2017,13(1): 36. |
86 | Boyer-Diaz Z, Aristu-Zabalza P, Andrés-Rozas M, et al. Pan-PPAR agonist lanifibranor improves portal hypertension and hepatic fibrosis in experimental advanced chronic liver disease[J].J Hepatol,2021,74(5): 1188. |
87 | Francque SM, Bedossa P, Ratziu V, et al. A randomized, controlled trial of the Pan-PPAR agonist lanifibranor in NASH[J].N Engl J Med,2021,385(17): 1547. |
88 | Mahapatra MK, Karuppasamy M, Sahoo BM. Therapeutic potential of semaglutide, a newer GLP-1 receptor agonist, in abating obesity, non-alcoholic steatohepatitis and neurodegenerative diseases: a narrative review[J].Pharm Res,2022,39(6): 1233. |
89 | Kim ER, Park JS, Kim JH, et al. A GLP-1/GLP-2 receptor dual agonist to treat NASH: targeting the gut-liver axis and microbiome[J].Hepatology,2022,75(6): 1523. |
90 | Armstrong MJ, Gaunt P, Aithal GP, et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study[J].Lancet,2016,387(10019): 679. |
91 | Mimee M, Citorik RJ, Lu TK. Microbiome therapeutics - advances and challenges[J].Adv Drug Deliv Rev,2016,105(Pt A): 44. |
92 | Lopez-Escalera S, Lund ML, Hermes GDA, et al. In vitroscreening for probiotic properties ofLactobacillusandBifidobacteriumstrains in assays relevant for non-alcoholic fatty liver disease prevention[J].Nutrients,2023,15(10): 2361. |
93 | Sharpton SR, Maraj B, Harding-Theobald E, et al. Gut microbiome-targeted therapies in nonalcoholic fatty liver disease: a systematic review, meta-analysis, and meta-regression[J].Am J Clin Nutr,2019,110(1): 139. |
94 | Bakhshimoghaddam F, Shateri K, Sina M, et al. Daily consumption of synbiotic yogurt decreases liver steatosis in patients with nonalcoholic fatty liver disease: a randomized controlled clinical trial[J].J Nutr,2018,148(8): 1276. |
95 | Maestri M, Santopaolo F, Pompili M, et al. Gut microbiota modulation in patients with non-alcoholic fatty liver disease: effects of current treatments and future strategies[J].Front Nutr,2023,10: 1110536. |
96 | Bhutiani N, Schucht JE, Miller KR, et al. Technical aspects of fecal microbial transplantation (FMT)[J].Curr Gastroenterol Rep,2018,20(7): 30. |
97 | 徐子龙, 耿志军, 李静. 粪菌移植在肠道疾病临床应用中的研究进展[J].betway必威登陆网址 (betway.com 学报),2021,42(7): 551. |
98 | Baunwall SMD, Andreasen SE, Hansen MM, et al. Faecal microbiota transplantation for first or second Clostridioides difficile infection (EarlyFMT): a randomised, double-blind, placebo-controlled trial[J].Lancet Gastroenterol Hepatol,2022,7(12): 1083. |
99 | Haifer C, Paramsothy S, Kaakoush NO, et al. Lyophilised oral faecal microbiota transplantation for ulcerative colitis (LOTUS): a randomised, double-blind, placebo-controlled trial[J].Lancet Gastroenterol Hepatol,2022,7(2): 141. |
100 | Xue LF, Deng ZL, Luo WH, et al. Effect of fecal microbiota transplantation on non-alcoholic fatty liver disease: a randomized clinical trial[J].Front Cell Infect Microbiol,2022,12: 759306. |
101 | Rocha R, Cotrim HP, Siqueira AC, et al. Fibras solúveis no tratamento da doença hepática gordurosa não-alcoólica: estudo piloto [Non alcoholic fatty liver disease: treatment with soluble fibres][J].Arq Gastroenterol,2007,44(4): 350. |
102 | Hald S, Schioldan AG, Moore ME, et al. Effects of arabinoxylan and resistant starch on intestinal microbiota and short-chain fatty acids in subjects with metabolic syndrome: a randomised crossover study[J].PLoS One,2016,11(7): e0159223. |
103 | Motiani KK, Collado MC, Eskelinen JJ, et al. Exercise training modulates gut microbiota profile and improves endotoxemia[J].Med Sci Sports Exerc,2020,52(1): 94. |
104 | Petit JM, Cercueil JP, Loffroy R, et al. Effect of liraglutide therapy on liver fat content in patients with inadequately controlled type 2 diabetes: the Lira-NAFLD study[J].J Clin Endocrinol Metab,2017,102(2): 407. |
105 | Ng SC, Xu ZL, Mak JWY, et al. Microbiota engraftment after faecal microbiota transplantation in obese subjects with type 2 diabetes: a 24-week, double-blind, randomised controlled trial[J].Gut,2022,71(4): 716. |
106 | Craven L, Rahman A, Nair Parvathy S, et al. Allogenic fecal microbiota transplantation in patients with nonalcoholic fatty liver disease improves abnormal small intestinal permeability: a randomized control trial[J].Am J Gastroenterol,2020,115(7): 1055. |
[1] | 王森, 张艺馨, 赵玉立, 郭慧敏, 封丽.超声在代谢相关脂肪性肝病及相关疾病诊断中的应用[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(9): 691-695. |
[2] | 王蕊蕊, 卢燕.幽门螺杆菌感染治疗的新进展[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(9): 687-690. |
[3] | 江益凡, 孙洋, 张艳, 李静.肠道菌群与肠黏膜免疫耐受的研究进展[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(9): 711-715. |
[4] | 徐子龙, 耿志军, 李静.粪菌移植在肠道疾病临床应用中的研究进展[J]. betway必威登陆网址 (betway.com )学报, 2021, 42(7): 551-555. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||