betway必威登陆网址 (betway.com )学报››2023,Vol. 44››Issue (5): 381-387.DOI:10.3969/j.issn.2097-0005.2023.05.012
收稿日期:
2022-09-06出版日期:
2023-05-25发布日期:
2023-06-14通讯作者:
张梅作者简介:
李永昊,硕士研究生,研究方向:乳腺癌的临床与基础研究,E-mail:lyh60740501@163.com。基金资助:
Yonghao LI1,2,3(), Mei ZHANG2,3(
)
Received:
2022-09-06Online:
2023-05-25Published:
2023-06-14Contact:
Mei ZHANG摘要:
乳腺癌是女性最常见的恶性肿瘤,发病率逐年升高,严重威胁女性生命健康。基于乳腺癌细胞异质性和个体间肿瘤微环境的差异,不同乳腺癌患者表现出不同特征。因此,乳腺癌的个性化诊疗就显得尤为重要。乳腺癌类器官培养是一种新兴的三维细胞培养模式,来源于有组织分化能力的干细胞或器官祖细胞,能够在体外保持来源组织的结构和功能。与传统的细胞培养方法相比,乳腺癌类器官很大程度保留了肿瘤细胞的异质性,为乳腺癌的研究和诊治创造了良好的模型,尤其在乳腺癌的机制研究、药物筛选、个体化方案治疗等方面,有着广泛的应用前景。本文主要就近年来人类乳腺癌类器官的研究与应用发展情况予以综述,并就其应用前景进行展望。
李永昊, 张梅. 类器官研究进展及其在乳腺癌中的应用[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(5): 381-387.
Yonghao LI, Mei ZHANG. Progress of organoid research and its application in breast cancer[J]. Journal of Shandong First Medical Unversity & Shandong Academy of Medical Sciences, 2023, 44(5): 381-387.
类器官分类 | 应用前景 | 举例 |
---|---|---|
胚胎干细胞 | 模拟体内器官发育 形态学特征研究 器官移植 |
研究器官发育时空变化及生长发育过程、培育成具有完整生理结构和活性的成熟器官进行移植 |
诱导多能干细胞 | 精准医疗 难治疾病建模 药物筛选 |
基因组测序技术和生物信息大数据进行交叉应用的新型医疗模式、hiPSCs类器官模拟神经发育阐明基因表达水平和表观遗传学的变化规律 |
成体干细胞 | 精准医疗 难治疾病建模 药物筛选 |
生理功能及病理改变机制方向、建立具有人体生理特征的长期毒性筛选模型 |
表1类器官的分类及其应用前景
类器官分类 | 应用前景 | 举例 |
---|---|---|
胚胎干细胞 | 模拟体内器官发育 形态学特征研究 器官移植 |
研究器官发育时空变化及生长发育过程、培育成具有完整生理结构和活性的成熟器官进行移植 |
诱导多能干细胞 | 精准医疗 难治疾病建模 药物筛选 |
基因组测序技术和生物信息大数据进行交叉应用的新型医疗模式、hiPSCs类器官模拟神经发育阐明基因表达水平和表观遗传学的变化规律 |
成体干细胞 | 精准医疗 难治疾病建模 药物筛选 |
生理功能及病理改变机制方向、建立具有人体生理特征的长期毒性筛选模型 |
1 | Mokhtari-Hessari P, Montazeri A. Health-related quality of life in breast cancer patients: review of reviews from 2008 to 2018[J]. Health Qual Life Outcomes, 2020, 18(1): 338. |
2 | Yates LR, Gerstung M, Knappskog S, et al. Subclonal diversification of primary breast cancer revealed by multiregion sequencing[J]. Nat Med, 2015, 21(7): 751. |
3 | Navin N, Kendall J, Troge J, et al. Tumour evolution inferred by single-cell sequencing[J]. Nature, 2011, 472(7341): 90. |
4 | Nik-Zainal S, Davies H, Staaf J, et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences[J]. Nature, 2016, 534(7605): 47. |
5 | Shah SP, Roth A, Goya R, et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers[J]. Nature, 2012, 486(7403): 395. |
6 | Kreso A, Dick JE. Evolution of the cancer stem cell model[J]. Cell Stem Cell, 2014, 14(3): 275. |
7 | Tan PH, Schnitt SJ, van de Vijver MJ, et al. Papillary and neuroendocrine breast lesions: the WHO stance[J]. Histopathology, 2015, 66(6): 761. |
8 | Roelofs C, Hollande F, Redvers R, et al. Breast tumour organoids: promising models for the genomic and functional characterisation of breast cancer[J]. Biochem Soc Trans, 2019, 47(1): 109. |
9 | Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing[J]. N Engl J Med, 2012, 366(10): 883. |
10 | de Bruin EC, McGranahan N, Mitter R, et al. Spatial and temporal diversity in genomic instability processes defines lung cancer evolution[J]. Science, 2014, 346(6206): 251. |
11 | Werbeck JL, Thudi NK, Martin CK, et al. Tumor microenvironment regulates metastasis and metastasis genes of mouse MMTV-PymT mammary cancer cellsin vivo[J]. Vet Pathol, 2014, 51(4): 868. |
12 | Weigelt B, Ghajar CM, Bissell MJ. The need for complex 3D culture models to unravel novel pathways and identify accurate biomarkers in breast cancer[J]. Adv Drug Deliv Rev, 2014, 69/70: 42. |
13 | Dai X, Cheng H, Bai Z, et al. Breast cancer cell line classification and its relevance with breast tumor subtyping[J]. J Cancer, 2017, 8(16): 3131. |
14 | Lee GY, Kenny PA, Lee EH, et al. Three-dimensional culture models of normal and malignant breast epithelial cells[J]. Nat Methods, 2007, 4(4): 359. |
15 | Anon. Goodbye, flat biology?[J]. Nature, 2003, 424(6951): 861. |
16 | Sachs N, de Ligt J, Kopper O, et al. A living biobank of breast cancer organoids captures disease heterogeneity[J]. Cell, 2018, 172(1/2): 373. |
17 | Gao H, Korn JM, Ferretti S, et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response[J]. Nat Med, 2015, 21(11): 1318. |
18 | Cristobal A, van den Toorn HWP, van de Wetering M, et al. Personalized proteome profiles of healthy and tumor human colon organoids reveal both individual diversity and basic features of colorectal cancer[J]. Cell Rep, 2017, 18(1): 263. |
19 | Weeber F, Ooft SN, Dijkstra KK, et al. Tumor organoids as a pre-clinical cancer model for drug discovery[J]. Cell Chem Biol, 2017, 24(9): 1092. |
20 | Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies[J]. Science, 2014, 345(6194): 1247125. |
21 | Yin X, Mead BE, Safaee H, et al. Engineering stem cell organoids[J]. Cell Stem Cell, 2016, 18(1): 25. |
22 | Drost J, Clevers H. Organoids in cancer research[J]. Nat Rev Cancer, 2018, 18(7): 407. |
23 | Liu X, Ory V, Chapman S, et al. ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells[J]. Am J Pathol, 2012, 180(2): 599. |
24 | Ben-David U, Ha G, Tseng YY, et al. Patient-derived xenografts undergo mouse-specific tumor evolution[J]. Nat Genet, 2017, 49(11): 1567. |
25 | Byrne AT, Alférez DG, Amant F, et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts[J]. Nat Rev Cancer, 2017, 17(4): 254. |
26 | 吴宇琪. 乳腺癌的体外类器官培养和个性化药物选择[D]. 北京: 北京协和医学院, 2018. |
27 | Clevers H. Modeling development and disease with organoids[J]. Cell, 2016, 165(7): 1586. |
28 | McCracken KW, Catá EM, Crawford CM, et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids[J]. Nature, 2014, 516(7531): 400. |
29 | Jung P, Sato T, Merlos-Suárez A, et al. Isolation andin vitroexpansion of human colonic stem cells[J]. Nat Med, 2011, 17(10): 1225. |
30 | Sato T, Stange DE, Ferrante M, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium[J]. Gastroenterology, 2011, 141(5): 1762. |
31 | Spence JR, Mayhew CN, Rankin SA, et al. Directed differentiation of human pluripotent stem cells into intestinal tissuein vitro[J]. Nature, 2011, 470(7332): 105. |
32 | Huch M, Bonfanti P, Boj SF, et al. Unlimitedin vitroexpansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis[J]. EMBO J, 2013, 32(20): 2708. |
33 | Shaw KR, Wrobel CN, Brugge JS. Use of three-dimensional basement membrane cultures to model oncogene-induced changes in mammary epithelial morphogenesis[J]. J Mammary Gland Biol Neoplasia, 2004, 9(4): 297. |
34 | Gao D, Vela I, Sboner A, et al. Organoid cultures derived from patients with advanced prostate cancer[J]. Cell, 2014, 159(1): 176. |
35 | Karthaus WR, Iaquinta PJ, Drost J, et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures[J]. Cell, 2014, 159(1): 163. |
36 | 李飞, 高栋. 类器官及其在肿瘤研究中的应用[J]. 中国细胞生物学学报, 2017, 39(4): 394. |
37 | 马琛婧, 杨媛, 张冰琳, 等. 类器官的研究现状及应用前景[J]. 昆明医科大学学报, 2019, 40(6): 1. |
38 | Yang L, Liu B, Chen H, et al. Progress in the application of organoids to breast cancer research[J]. J Cell Mol Med, 2020, 24(10): 5420. |
39 | Yuki K, Cheng N, Nakano M, et al. Organoid models of tumor immunology[J]. Trends Immunol, 2020, 41(8): 652. |
40 | De Crignis E, Hossain T, Romal S, et al. Application of human liver organoids as a patient-derived primary model for HBV infection and related hepatocellular carcinoma[J]. Elife, 2021, 10: e60747. |
41 | Nie YZ, Zheng YW, Miyakawa K, et al. Recapitulation of hepatitis B virus-host interactions in liver organoids from human induced pluripotent stem cells[J]. EBioMedicine, 2018, 35: 114. |
42 | Bartfeld S, Bayram T, van de Wetering M, et al.In vitroexpansion of human gastric epithelial stem cells and their responses to bacterial infection[J]. Gastroenterology, 2015, 148(1): 126. |
43 | Baktash Y, Madhav A, Coller KE, et al. Single particle imaging of polarized hepatoma organoids upon hepatitis C virus infection reveals an ordered and sequential entry process[J]. Cell Host Microbe, 2018, 23(3): 382. |
44 | Shibata W, Sue S, Tsumura S, et al. Helicobacter-induced gastric inflammation alters the properties of gastric tissue stem/progenitor cells[J]. BMC Gastroenterol, 2017, 17(1): 145. |
45 | Huang JY, Sweeney EG, Sigal M, et al. Chemodetection and destruction of host urea allowsHelicobacter pylorito locate the epithelium[J]. Cell Host Microbe, 2015, 18(2): 147. |
46 | Pleguezuelos-Manzano C, Puschhof J, Rosendahl Huber A, et al. Mutational signature in colorectal cancer caused by genotoxicpks+E. coli[J]. Nature, 2020, 580(7802): 269. |
47 | Xu R, Zhou X, Wang S, et al. Tumor organoid models in precision medicine and investigating cancer-stromal interactions[J]. Pharmacol Ther, 2021, 218: 107668. |
48 | Tuveson D, Clevers H. Cancer modeling meets human organoid technology[J]. Science, 2019, 364(6444): 952. |
49 | Wimmer RA, Leopoldi A, Aichinger M, et al. Human blood vessel organoids as a model of diabetic vasculopathy[J]. Nature, 2019, 565(7740): 505. |
50 | Cattaneo CM, Dijkstra KK, Fanchi LF, et al. Tumor organoid-T-cell coculture systems[J]. Nat Protoc, 2020, 15(1): 15. |
51 | Dijkstra KK, Cattaneo CM, Weeber F, et al. Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids[J]. Cell, 2018, 174(6): 1586. |
52 | van de Wetering M, Francies HE, Francis JM, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients[J]. Cell, 2015, 161(4): 933. |
53 | Pauli C, Hopkins BD, Prandi D, et al. Personalizedin vitroandin vivocancer models to guide precision medicine[J]. Cancer Discov, 2017, 7(5): 462. |
54 | Mun SJ, Ryu JS, Lee MO, et al. Generation of expandable human pluripotent stem cell-derived hepatocyte-like liver organoids[J]. J Hepatol, 2019, 71(5): 970. |
55 | Lau HCH, Kranenburg O, Xiao H, et al. Organoid models of gastrointestinal cancers in basic and translational research[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(4): 203. |
56 | Michels BE, Mosa MH, Streibl BI, et al. Pooledin vitroandin vivoCRISPR-Cas9 screening identifies tumor suppressors in human colon organoids[J]. Cell Stem Cell, 2020, 26(5): 782. |
57 | Sokol ES, Miller DH, Breggia A, et al. Growth of human breast tissues from patient cells in 3D hydrogel scaffolds[J]. Breast Cancer Res, 2016, 18(1): 19. |
58 | Cravero D, Martignani E, Miretti S, et al. Generation of induced pluripotent stem cells from bovine epithelial cells and partial redirection toward a mammary phenotypein vitro[J]. Cell Reprogram, 2015, 17(3): 211. |
59 | Holliday DL, Speirs V. Choosing the right cell line for breast cancer research[J]. Breast Cancer Res, 2011, 13(4): 215. |
60 | Whittle JR, Lewis MT, Lindeman GJ, et al. Patient-derived xenograft models of breast cancer and their predictive power[J]. Breast Cancer Res, 2015, 17(1): 17. |
61 | Vargo-Gogola T, Rosen JM. Modelling breast cancer: one size does not fit all[J]. Nat Rev Cancer, 2007, 7(9): 659. |
62 | Sharma SV, Haber DA, Settleman J. Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents[J]. Nat Rev Cancer, 2010, 10(4): 241. |
63 | Zhou J, Su J, Fu X, et al. Microfluidic device for primary tumor spheroid isolation[J]. Exp Hematol Oncol, 2017, 6: 22. |
64 | Hahn WC, Weinberg RA. Modelling the molecular circuitry of cancer[J]. Nat Rev Cancer, 2002, 2(5): 331. |
65 | Walsh AJ, Cook RS, Sanders ME, et al. Drug response in organoids generated from frozen primary tumor tissues[J]. Sci Rep, 2016, 6: 18889. |
66 | Cheung KJ, Gabrielson E, Werb Z, et al. Collective invasion in breast cancer requires a conserved basal epithelial program[J]. Cell, 2013, 155(7): 1639. |
67 | Junttila MR, de Sauvage FJ. Influence of tumour micro-environment heterogeneity on therapeutic response[J]. Nature, 2013, 501(7467): 346. |
68 | Zumwalde NA, Haag JD, Sharma D, et al. Analysis of immune cells from human mammary ductal epithelial organoids reveals Vδ2+T cells that efficiently target breast carcinoma cells in the presence of bisphosphonate[J]. Cancer Prev Res (Phila), 2016, 9(4): 305. |
69 | Pampaloni F, Chang BJ, Stelzer EH. Light sheet-based fluorescence microscopy (LSFM) for the quantitative imaging of cells and tissues[J]. Cell Tissue Res, 2015, 360(1): 129. |
70 | Huch M, Knoblich JA, Lutolf MP, et al. The hope and the hype of organoid research[J]. Development, 2017, 144(6): 938. |
[1] | 赵玉立, 张艺馨, 王森, 郭慧敏, 封丽.第二个线粒体衍生半胱天冬氨酸蛋白酶激活剂模拟物与乳腺癌治疗[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(9): 702-706. |
[2] | 赵益浩, 张栋斌.TCH新辅助化疗对中国HER2阳性乳腺癌患者有效性及安全性的Meta分析[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(9): 659-664. |
[3] | 张芳, 冉丽媛, 张金金, 吴英杰.重组人生长激素对棕榈酸诱导的HepG2细胞脂质沉积的影响[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(9): 641-646. |
[4] | 司贵米, 山长平.外泌体非编码RNA在三阴性乳腺癌中的研究进展[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(6): 461-465. |
[5] | 毕钊, 王永胜.乳腺癌新辅助治疗后局部区域处理降阶梯策略[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(4): 249-253. |
[6] | 白金霞, 张婷, 卢美琪, 卢贞.溃疡性结肠炎体外模型研究进展[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(8): 631-634. |
[7] | 王建刚, 侯勇, 王鹏程, 吕心愿.左侧乳腺癌根治术后调强放疗多目标优化与直接子野优化的剂量学比较[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(4): 267-272. |
[8] | 李健, 王颜.TMEM65表达对乳腺癌患者预后的影响[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(3): 198-204. |
[9] | 孙新六.乳腺癌LAT1表达及micro-PET示踪检测[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(1): 20-23. |
[10] | 张丽.组织学病理学和分子分类对乳腺癌的病理诊断价值[J]. betway必威登陆网址 (betway.com )学报, 2021, 42(2): 153-154. |
[11] | 李彬彬, 王新桐, 王新立.乳腺癌新辅助化疗前后相关生物因子的变化及MP分级相关预测因子分析[J]. betway必威登陆网址 (betway.com )学报, 2021, 42(12): 899-902. |
[12] | 赵体贺, 王冬旭, 李湘奇.含不同蒽环类化疗方案致乳腺癌患者心脏毒性的临床研究[J]. betway必威登陆网址 (betway.com )学报, 2021, 42(11): 823-828. |
[13] | 王冬雪, 王婧男, 沈倩倩, 孙玉萍.男性乳腺癌患者基于分子分型的Nomogram预测模型的构建:基于SEER的研究[J]. betway必威登陆网址 (betway.com )学报, 2021, 42(11): 816-822. |
[14] | 李健, 梁玉娜.乳腺癌基于蛋白表达的风险预后模型构建和6种关键蛋白的鉴定[J]. betway必威登陆网址 (betway.com )学报, 2021, 42(10): 721-728. |
[15] | 顾明强.新辅助化疗周疗模式治疗晚期乳腺癌[J]. betway必威登陆网址 (betway.com )学报, 2021, 42(1): 49-52. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||