betway必威登陆网址 (betway.com )学报››2023,Vol. 44››Issue (7): 502-506.DOI:10.3969/j.issn.2097-0005.2023.07.005
卢新霞1(), 王连高1, 王英杰1, 张玉静1, 李翔1, 张芸1, 李栋1, 潘相鹏2(
)
收稿日期:
2023-05-16出版日期:
2023-07-25发布日期:
2023-09-12通讯作者:
潘相鹏作者简介:
卢新霞,硕士研究生,研究方向:慢性病与糖基组学,E-mail:luxinxia318@163.com。基金资助:
Xinxia LU1(), Liangao WANG1, Yingjie WANG1, Yujing ZHANG1, Xiang LI1, Yun ZHANG1, Dong LI1, Xiangpeng PAN2(
)
Received:
2023-05-16Online:
2023-07-25Published:
2023-09-12Contact:
Xiangpeng PAN摘要:
目的探讨系统性红斑狼疮(systemic lupus erythematosus,SLE)女性患者的免疫球蛋白G N-糖基(IgG N-糖基)与红细胞分布宽度(red blood cell distribution width,RDW)之间的关系,为后续SLE联合标志物提供理论基础。方法选取2018年10月—2020年5月在山东省聊城市人民医院风湿免疫科门诊确诊及住院的341例SLE女性患者为研究对象,采集血液样本进行血常规检测并提取纯化血浆IgG,采用超高液相色谱法检测血浆IgG N-糖基水平。IgG N-糖基与红细胞分布宽度的关联性分析采用Spearman秩相关与logistic回归分析。结果RDW高水平组中的半乳糖基化及唾液酸化水平显著低于RDW低水平组。logistic回归分析结果显示,GP12、GP14、GP18与GP23为RDW升高的保护因素,高水平的GP4与GP8为RDW升高的危险因素。结论SLE女性患者IgG N-糖基与RDW存在关联性,异常的IgG N-糖基化可能是影响RDW水平升高的因素,为后续二者联合指标对疾病进行早期诊断或反映疾病情况的研究提供了理论基础。
卢新霞, 王连高, 王英杰, 张玉静, 李翔, 张芸, 李栋, 潘相鹏. 系统性红斑狼疮女性患者IgG N-糖基与红细胞分布宽度的关联性研究[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(7): 502-506.
Xinxia LU, Liangao WANG, Yingjie WANG, Yujing ZHANG, Xiang LI, Yun ZHANG, Dong LI, Xiangpeng PAN. Association of immunoglobulin G N-glycans and red blood cell distribution width in female patients with systemic lupus erythematosus[J]. Journal of Shandong First Medical Unversity & Shandong Academy of Medical Sciences, 2023, 44(7): 502-506.
基本特征 | RDW低水平组 | RDW高水平组 | t/χ2 | P |
---|---|---|---|---|
Q1 ~ Q3 (n= 266) |
Q4 (n= 75) |
|||
年龄/岁 | 40.30 ± 12.73 | 40.56 ± 13.71 | 0.153 | 0.878 |
高血压 | 32(12.03) | 16(21.33) | 4.187 | 0.041 |
糖尿病 | 24(9.02) | 8(10.67) | 0.186 | 0.666 |
贫血 | 100(37.59) | 23(30.67) | 1.217 | 0.270 |
BMI/(kg/m2) | 23.96 ± 3.11 | 23.67 ± 3.27 | 0.718 | 0.473 |
RDW/% | 13.13 ± 0.75 | 16.72 ± 2.15 | 14.249 | < 0.001 |
TC/(mmol/L) | 4.80 ± 1.57 | 4.96 ± 1.70 | 0.759 | 0.449 |
TG/(mmol/L) | 1.43 ± 0.78 | 1.77 ± 1.13 | 2.458 | 0.016 |
HDL/(mmol/L) | 1.30 ± 0.40 | 1.38 ± 0.47 | 1.501 | 0.134 |
LDL/(mmol/L) | 6.92 ± 64.06 | 9.32 ± 56.70 | 0.295 | 0.768 |
表1SLE女性患者的基本特征[n(%)/(xˉ ± s)]
基本特征 | RDW低水平组 | RDW高水平组 | t/χ2 | P |
---|---|---|---|---|
Q1 ~ Q3 (n= 266) |
Q4 (n= 75) |
|||
年龄/岁 | 40.30 ± 12.73 | 40.56 ± 13.71 | 0.153 | 0.878 |
高血压 | 32(12.03) | 16(21.33) | 4.187 | 0.041 |
糖尿病 | 24(9.02) | 8(10.67) | 0.186 | 0.666 |
贫血 | 100(37.59) | 23(30.67) | 1.217 | 0.270 |
BMI/(kg/m2) | 23.96 ± 3.11 | 23.67 ± 3.27 | 0.718 | 0.473 |
RDW/% | 13.13 ± 0.75 | 16.72 ± 2.15 | 14.249 | < 0.001 |
TC/(mmol/L) | 4.80 ± 1.57 | 4.96 ± 1.70 | 0.759 | 0.449 |
TG/(mmol/L) | 1.43 ± 0.78 | 1.77 ± 1.13 | 2.458 | 0.016 |
HDL/(mmol/L) | 1.30 ± 0.40 | 1.38 ± 0.47 | 1.501 | 0.134 |
LDL/(mmol/L) | 6.92 ± 64.06 | 9.32 ± 56.70 | 0.295 | 0.768 |
IgG N-糖基 | RDW低水平组 | RDW高水平组 | Z | P |
---|---|---|---|---|
Q1 ~ Q3 | Q4 | |||
GP1 | 0.11(0.07,0.22) | 0.14(0.09,0.23) | 2.037 | 0.042 |
GP2 | 0.81(0.47,1.21) | 0.98(0.51,1.21) | 0.945 | 0.345 |
GP3 | 0.36(0.22,0.52) | 0.45(0.33,0.63) | 2.980 | 0.003 |
GP4 | 24.68(20.76,28.24) | 25.90(22.66,29.52) | 2.075 | 0.038 |
GP5 | 0.10(0.04,0.18) | 0.11(0.06,0.18) | 1.158 | 0.247 |
GP6 | 5.82(4.89,6.94) | 6.11(5.06,7.15) | 0.511 | 0.609 |
GP7 | 0.55(0.35,0.69) | 0.57(0.32,0.85) | 1.129 | 0.259 |
GP8 | 14.77(12.72,17.76) | 16.47(15.25,18.63) | 3.794 | < 0.001 |
GP9 | 5.59(3.85,8.49) | 4.98(3.77,7.51) | 1.181 | 0.238 |
GP10 | 3.77(3.15,4.66) | 3.85(3.21,4.98) | 0.764 | 0.445 |
GP11 | 0.23(0.08,0.47) | 0.23(0.08,0.43) | 0.387 | 0.699 |
GP12 | 1.30(0.96,1.58) | 1.15(0.75,1.57) | 2.241 | 0.025 |
GP13 | 0.33(0.22,0.51) | 0.35(0.24,0.51) | 0.868 | 0.386 |
GP14 | 15.27(12.97,18.22) | 14.53(12.37,17.04) | 2.203 | 0.028 |
GP15 | 1.04(0.70,1.40) | 1.03(0.80,1.36) | 0.226 | 0.821 |
GP16 | 2.62(2.28,2.99) | 2.57(2.24,2.94) | 1.061 | 0.289 |
GP17 | 1.45(1.15,1.85) | 1.38(1.22,1.74) | 0.660 | 0.509 |
GP18 | 10.70(9.50,12.67) | 10.56(8.25,12.15) | 2.173 | 0.030 |
GP19 | 2.33(2.07,2.73) | 2.20(1.97,2.59) | 2.118 | 0.034 |
GP20 | 0.09(0.05,0.19) | 0.07(0.04,0.12) | 0.337 | 0.736 |
GP21 | 0.60(0.47,0.82) | 0.65(0.50,0.83) | 0.728 | 0.467 |
GP22 | 0.27(0.17,0.41) | 0.27(0.17,0.37) | 0.409 | 0.683 |
GP23 | 1.35(1.09,1.61) | 1.23(1.00,1.53) | 2.249 | 0.025 |
GP24 | 2.00(1.48,2.55) | 1.91(1.53,2.46) | 0.416 | 0.678 |
岩藻糖基化 | 93.77(92.62,94.77) | 93.74(92.90,94.67) | 0.086 | 0.931 |
半乳糖基化 | 67.52(62.18,72.47) | 65.63(61.62,69.39) | 2.384 | 0.017 |
唾液酸化 | 22.28(20.15,24.38) | 21.06(18.94,23.64) | 2.857 | 0.004 |
平分型N-GlcNAc | 16.71(15.41,18.59) | 16.77(15.00,19.03) | 0.241 | 0.810 |
表2SLE女性患者不同RDW水平组间IgG N-糖基水平的差异比较[M(Q1,Q3 )]
IgG N-糖基 | RDW低水平组 | RDW高水平组 | Z | P |
---|---|---|---|---|
Q1 ~ Q3 | Q4 | |||
GP1 | 0.11(0.07,0.22) | 0.14(0.09,0.23) | 2.037 | 0.042 |
GP2 | 0.81(0.47,1.21) | 0.98(0.51,1.21) | 0.945 | 0.345 |
GP3 | 0.36(0.22,0.52) | 0.45(0.33,0.63) | 2.980 | 0.003 |
GP4 | 24.68(20.76,28.24) | 25.90(22.66,29.52) | 2.075 | 0.038 |
GP5 | 0.10(0.04,0.18) | 0.11(0.06,0.18) | 1.158 | 0.247 |
GP6 | 5.82(4.89,6.94) | 6.11(5.06,7.15) | 0.511 | 0.609 |
GP7 | 0.55(0.35,0.69) | 0.57(0.32,0.85) | 1.129 | 0.259 |
GP8 | 14.77(12.72,17.76) | 16.47(15.25,18.63) | 3.794 | < 0.001 |
GP9 | 5.59(3.85,8.49) | 4.98(3.77,7.51) | 1.181 | 0.238 |
GP10 | 3.77(3.15,4.66) | 3.85(3.21,4.98) | 0.764 | 0.445 |
GP11 | 0.23(0.08,0.47) | 0.23(0.08,0.43) | 0.387 | 0.699 |
GP12 | 1.30(0.96,1.58) | 1.15(0.75,1.57) | 2.241 | 0.025 |
GP13 | 0.33(0.22,0.51) | 0.35(0.24,0.51) | 0.868 | 0.386 |
GP14 | 15.27(12.97,18.22) | 14.53(12.37,17.04) | 2.203 | 0.028 |
GP15 | 1.04(0.70,1.40) | 1.03(0.80,1.36) | 0.226 | 0.821 |
GP16 | 2.62(2.28,2.99) | 2.57(2.24,2.94) | 1.061 | 0.289 |
GP17 | 1.45(1.15,1.85) | 1.38(1.22,1.74) | 0.660 | 0.509 |
GP18 | 10.70(9.50,12.67) | 10.56(8.25,12.15) | 2.173 | 0.030 |
GP19 | 2.33(2.07,2.73) | 2.20(1.97,2.59) | 2.118 | 0.034 |
GP20 | 0.09(0.05,0.19) | 0.07(0.04,0.12) | 0.337 | 0.736 |
GP21 | 0.60(0.47,0.82) | 0.65(0.50,0.83) | 0.728 | 0.467 |
GP22 | 0.27(0.17,0.41) | 0.27(0.17,0.37) | 0.409 | 0.683 |
GP23 | 1.35(1.09,1.61) | 1.23(1.00,1.53) | 2.249 | 0.025 |
GP24 | 2.00(1.48,2.55) | 1.91(1.53,2.46) | 0.416 | 0.678 |
岩藻糖基化 | 93.77(92.62,94.77) | 93.74(92.90,94.67) | 0.086 | 0.931 |
半乳糖基化 | 67.52(62.18,72.47) | 65.63(61.62,69.39) | 2.384 | 0.017 |
唾液酸化 | 22.28(20.15,24.38) | 21.06(18.94,23.64) | 2.857 | 0.004 |
平分型N-GlcNAc | 16.71(15.41,18.59) | 16.77(15.00,19.03) | 0.241 | 0.810 |
变量 | 总RDW水平 | Q1 ~ Q3 | Q4 | |||
---|---|---|---|---|---|---|
r | P | r | P | r | P | |
GP1 | -0.036 | 0.505 | -0.171 | 0.003 | -0.181 | 0.060 |
GP2 | 0.002 | 0.971 | -0.042 | 0.249 | -0.199 | 0.043 |
GP3 | 0.093 | 0.087 | -0.016 | 0.398 | -0.234 | 0.021 |
GP4 | 0.113 | 0.038 | 0.035 | 0.287 | 0.277 | 0.008 |
GP5 | -0.025 | 0.650 | -0.100 | 0.052 | -0.182 | 0.059 |
GP6 | -0.043 | 0.427 | -0.105 | 0.043 | 0.045 | 0.352 |
GP7 | 0.018 | 0.746 | -0.035 | 0.282 | -0.079 | 0.250 |
GP8 | 0.286 | < 0.001 | 0.201 | < 0.001 | 0.249 | 0.015 |
GP9 | -0.073 | 0.181 | -0.058 | 0.174 | 0.191 | 0.050 |
GP10 | 0.076 | 0.164 | 0.071 | 0.123 | 0.060 | 0.306 |
GP11 | 0.092 | 0.091 | 0.161 | 0.004 | 0.130 | 0.133 |
GP12 | -0.202 | < 0.001 | -0.177 | 0.002 | -0.223 | 0.027 |
GP13 | 0.007 | 0.896 | -0.030 | 0.315 | -0.179 | 0.062 |
GP14 | -0.159 | 0.003 | -0.099 | 0.054 | -0.266 | 0.011 |
GP15 | 0.067 | 0.214 | 0.100 | 0.053 | -0.092 | 0.217 |
GP16 | 0.038 | 0.489 | 0.132 | 0.016 | -0.051 | 0.333 |
GP17 | -0.064 | 0.241 | -0.055 | 0.185 | -0.111 | 0.171 |
GP18 | -0.117 | 0.030 | -0.030 | 0.315 | -0.215 | 0.032 |
GP19 | -0.131 | 0.015 | -0.069 | 0.129 | -0.158 | 0.088 |
GP20 | -0.002 | 0.972 | 0.030 | 0.313 | -0.166 | 0.077 |
GP21 | -0.123 | 0.023 | -0.222 | < 0.001 | -0.278 | 0.008 |
GP22 | -0.044 | 0.417 | -0.048 | 0.219 | 0.006 | 0.479 |
GP23 | -0.074 | 0.173 | 0.029 | 0.320 | -0.068 | 0.282 |
GP24 | -0.099 | 0.069 | -0.114 | 0.031 | -0.266 | 0.011 |
表3SLE女性患者RDW水平与IgG-N糖基水平相关性分析
变量 | 总RDW水平 | Q1 ~ Q3 | Q4 | |||
---|---|---|---|---|---|---|
r | P | r | P | r | P | |
GP1 | -0.036 | 0.505 | -0.171 | 0.003 | -0.181 | 0.060 |
GP2 | 0.002 | 0.971 | -0.042 | 0.249 | -0.199 | 0.043 |
GP3 | 0.093 | 0.087 | -0.016 | 0.398 | -0.234 | 0.021 |
GP4 | 0.113 | 0.038 | 0.035 | 0.287 | 0.277 | 0.008 |
GP5 | -0.025 | 0.650 | -0.100 | 0.052 | -0.182 | 0.059 |
GP6 | -0.043 | 0.427 | -0.105 | 0.043 | 0.045 | 0.352 |
GP7 | 0.018 | 0.746 | -0.035 | 0.282 | -0.079 | 0.250 |
GP8 | 0.286 | < 0.001 | 0.201 | < 0.001 | 0.249 | 0.015 |
GP9 | -0.073 | 0.181 | -0.058 | 0.174 | 0.191 | 0.050 |
GP10 | 0.076 | 0.164 | 0.071 | 0.123 | 0.060 | 0.306 |
GP11 | 0.092 | 0.091 | 0.161 | 0.004 | 0.130 | 0.133 |
GP12 | -0.202 | < 0.001 | -0.177 | 0.002 | -0.223 | 0.027 |
GP13 | 0.007 | 0.896 | -0.030 | 0.315 | -0.179 | 0.062 |
GP14 | -0.159 | 0.003 | -0.099 | 0.054 | -0.266 | 0.011 |
GP15 | 0.067 | 0.214 | 0.100 | 0.053 | -0.092 | 0.217 |
GP16 | 0.038 | 0.489 | 0.132 | 0.016 | -0.051 | 0.333 |
GP17 | -0.064 | 0.241 | -0.055 | 0.185 | -0.111 | 0.171 |
GP18 | -0.117 | 0.030 | -0.030 | 0.315 | -0.215 | 0.032 |
GP19 | -0.131 | 0.015 | -0.069 | 0.129 | -0.158 | 0.088 |
GP20 | -0.002 | 0.972 | 0.030 | 0.313 | -0.166 | 0.077 |
GP21 | -0.123 | 0.023 | -0.222 | < 0.001 | -0.278 | 0.008 |
GP22 | -0.044 | 0.417 | -0.048 | 0.219 | 0.006 | 0.479 |
GP23 | -0.074 | 0.173 | 0.029 | 0.320 | -0.068 | 0.282 |
GP24 | -0.099 | 0.069 | -0.114 | 0.031 | -0.266 | 0.011 |
IgG N-糖基 | Model 1 | Model 2 | ||
---|---|---|---|---|
OR(95%CI) | P | OR(95%CI) | P | |
GP1 | 1.962 (0.375 ~ 10.264) | 0.425 | 1.208 (0.206 ~ 7.080) | 0.834 |
GP3 | 2.328 (1.061 ~ 5.106) | 0.035 | 2.131 (0.944 ~ 4.809) | 0.069 |
GP4 | 1.048 (1.003 ~ 1.095) | 0.036 | 1.052 (1.005 ~ 1.102) | 0.030 |
GP8 | 1.136 (1.057 ~ 1.221) | 0.001 | 1.138 (1.055 ~ 1.277) | 0.001 |
GP12 | 0.575 (0.360 ~ 0.919) | 0.021 | 0.564 (0.352 ~ 0.904) | 0.017 |
GP14 | 0.904 (0.837 ~ 0.976) | 0.010 | 0.902 (0.834 ~ 0.976) | 0.010 |
GP18 | 0.846 (0.755 ~ 0.947) | 0.004 | 0.840 (0.745 ~ 0.947) | 0.004 |
GP19 | 0.602 (0.380 ~ 0.953) | 0.030 | 0.634 (0.394 ~ 1.021) | 0.061 |
GP23 | 0.499 (0.266 ~ 0.934) | 0.030 | 0.473 (0.244 ~ 0.918) | 0.027 |
表4IgG N-糖基水平与RDW水平组的logistic回归分析
IgG N-糖基 | Model 1 | Model 2 | ||
---|---|---|---|---|
OR(95%CI) | P | OR(95%CI) | P | |
GP1 | 1.962 (0.375 ~ 10.264) | 0.425 | 1.208 (0.206 ~ 7.080) | 0.834 |
GP3 | 2.328 (1.061 ~ 5.106) | 0.035 | 2.131 (0.944 ~ 4.809) | 0.069 |
GP4 | 1.048 (1.003 ~ 1.095) | 0.036 | 1.052 (1.005 ~ 1.102) | 0.030 |
GP8 | 1.136 (1.057 ~ 1.221) | 0.001 | 1.138 (1.055 ~ 1.277) | 0.001 |
GP12 | 0.575 (0.360 ~ 0.919) | 0.021 | 0.564 (0.352 ~ 0.904) | 0.017 |
GP14 | 0.904 (0.837 ~ 0.976) | 0.010 | 0.902 (0.834 ~ 0.976) | 0.010 |
GP18 | 0.846 (0.755 ~ 0.947) | 0.004 | 0.840 (0.745 ~ 0.947) | 0.004 |
GP19 | 0.602 (0.380 ~ 0.953) | 0.030 | 0.634 (0.394 ~ 1.021) | 0.061 |
GP23 | 0.499 (0.266 ~ 0.934) | 0.030 | 0.473 (0.244 ~ 0.918) | 0.027 |
1 | Salvagno GL, Sanchis-Gomar F, Picanza A, et al. Red blood cell distribution width: a simple parameter with multiple clinical applications[J]. Crit Rev Clin Lab Sci, 2015, 52(2): 86. |
2 | Turcato G, Serafini V, Dilda A, et al. Red blood cell distribution width independently predicts medium-term mortality and major adverse cardiac events after an acute coronary syndrome[J]. Ann Transl Med, 2016, 4(13): 254. |
3 | Wei TT, Wang LL, Yin JR, et al. Relationship between red blood cell distribution width, bilirubin, and clinical characteristics of patients with gastric cancer[J]. Int J Lab Hematol, 2017, 39(5): 497. |
4 | Kai Y, Zishu G, Shihe G, et al. Changes in red blood cell distribution width is associated with liver function parameters and prognosis in patients with chronic HBV liver disease[J]. Clin Lab, 2016, 62(11): 2197. |
5 | Gao MZ, Huang YL, Wu XD, et al. Red blood cell distribution width and neutrophil to lymphocyte ratio are correlated with disease activity of dermatomyositis and polymyositis[J]. J Clin Lab Anal, 2018, 32(1): e22209. |
6 | Peng YF, Zhang Q, Cao L, et al. Red blood cell distribution width: a potential maker estimating disease activity of ankylosing spondylitis[J]. Int J Clin Exp Med, 2014, 7(12): 5289. |
7 | He Y, Liu C, Zeng Z, et al. Red blood cell distribution width: a potential laboratory parameter for monitoring inflammation in rheumatoid arthritis[J]. Clin Rheumatol, 2018, 37(1): 161. |
8 | Hu ZD, Chen Y, Zhang L, et al. Red blood cell distribution width is a potential index to assess the disease activity of systemic lupus erythematosus[J]. Clin Chim Acta, 2013, 425: 202. |
9 | Zou XL, Lin XJ, Ni X, et al. Baseline red blood cell distribution width correlates with disease activity and therapeutic outcomes in patients with systemic lupus erythematosus, irrespective of anemia status[J]. Clin Lab, 2016, 62(10): 1841. |
10 | Adua E, Russell A, Roberts P, et al. Innovation analysis on postgenomic biomarkers: glycomics for chronic diseases[J]. OMICS, 2017, 21(4): 183. |
11 | Zoldoš V, Horvat T, Lauc G. Glycomics meets genomics, epigenomics and other high throughput omics for system biology studies[J]. Curr Opin Chem Biol, 2013, 17(1): 34. |
12 | Biermann MH, Griffante G, Podolska MJ, et al. Sweet but dangerous - the role of immunoglobulin G glycosylation in autoimmunity and inflammation[J]. Lupus, 2016, 25(8): 934. |
13 | Alter G, Ottenhoff THM, Joosten SA. Antibody glycosylation in inflammation, disease and vaccination[J]. Semin Immunol, 2018, 39: 102. |
14 | Vučković F, Krištić J, Gudelj I, et al. Association of systemic lupus erythematosus with decreased immunosuppressive potential of the IgG glycome[J]. Arthritis Rheumatol, 2015, 67(11): 2978. |
15 | Russell AC, Šimurina M, Garcia MT, et al. The N-glycosylation of immunoglobulin G as a novel biomarker of Parkinson’s disease[J]. Glycobiology, 2017, 27(5): 501. |
16 | Ren S, Zhang Z, Xu C, et al. Distribution of IgG galactosylation as a promising biomarker for cancer screening in multiple cancer types[J]. Cell Res, 2016, 26(8): 963. |
17 | Lemmers RFH, Vilaj M, Urda D, et al. IgG glycan patterns are associated with type 2 diabetes in independent European populations[J]. Biochim Biophys Acta Gen Subj, 2017, 1861(9): 2240. |
18 | Low ESH, Krishnaswamy G, Thumboo J. Comparing the 1997 update of the 1982 American College of Rheumatology (ACR-97) and the 2012 Systemic Lupus International Collaborating Clinics (SLICC-12) criteria for systemic lupus erythematosus (SLE) classification: which enables earlier classification of SLE in an urban Asian population?[J]. Lupus, 2019, 28(1): 11. |
19 | Raju TS. Terminal sugars of Fc glycans influence antibody effector functions of IgGs[J]. Curr Opin Immunol, 2008, 20(4): 471. |
20 | Karsten CM, Pandey MK, Figge J, et al. Anti-inflammatory activity of IgG1 mediated by Fc galactosylation and association of FcγRIIB and dectin-1[J]. Nat Med, 2012, 18(9): 1401. |
[1] | 张露, 赵乐乐, 解思凯, 李海鹏, 王俊杰, 李正红.嵌合抗原受体T细胞治疗女性高发恶性肿瘤的研究进展和挑战[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(8): 608-612. |
[2] | 陈文文, 姜娟, 高洁, 张厚莉, 张许, 李振山, 刘燕琳, 党和勤.红细胞分布宽度对骨质疏松症的预测价值[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(8): 571-574. |
[3] | 康丽, 刘光海, 张桂果.盆腔脏器脱垂保留子宫手术的研究进展[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(7): 553-557. |
[4] | 李金娇, 石颜军, 周玮.儿童系统性红斑狼疮心理现状及影响因素[J]. betway必威登陆网址 (betway.com )学报, 2021, 42(10): 797-800. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||