betway必威登陆网址 (betway.com )学报››2023,Vol. 44››Issue (7): 535-540.DOI:10.3969/j.issn.2097-0005.2023.07.012
收稿日期:
2023-04-11出版日期:
2023-07-25发布日期:
2023-09-12通讯作者:
冯锋,刘富垒作者简介:
李彬,硕士研究生,研究方向:药物靶向递送与控释,E-mail:3220020334@stu.cpu.edu.cn。基金资助:
Bin LI1(), Feng FENG1(
), Fulei LIU2(
)
Received:
2023-04-11Online:
2023-07-25Published:
2023-09-12Contact:
Feng FENG,Fulei LIU摘要:
手术切除是多数肿瘤治疗的基础策略,复发和转移是恶性肿瘤手术治疗失败的主要原因。临床上多种类型的肿瘤患者会在术后1 ~ 2年内出现复发风险,导致复发事件高发。尽管目前手术治疗手段已经取得极大进步,仍无法完全避免肿瘤患者术后复发。本文主要从激活交感神经系统、凝血系统、激发炎症、诱导免疫抑制等方面介绍手术切除诱发肿瘤复发转移机制的复杂性,并围绕这些机制介绍相关纠正策略,为提升肿瘤手术治疗效率提供重要参考,也为术后复发纠正策略的设计提供启发。
李彬, 冯锋, 刘富垒. 肿瘤切除手术诱发术后复发的机制及纠正策略研究进展[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(7): 535-540.
Bin LI, Feng FENG, Fulei LIU. Research progress on mechanism and correction strategy of tumor recurrence promoted by resection[J]. Journal of Shandong First Medical Unversity & Shandong Academy of Medical Sciences, 2023, 44(7): 535-540.
图1手术切除肿瘤诱发转移的简要机制VEG为血管内皮生长因子;βAR为β-肾上腺素受体;PGE2为前列腺素E2;COX-2为环氧合酶-2;SNS为交感神经系统;NETs为中性粒细胞胞外诱捕网;MMPs为基质金属蛋白酶;TGF-β为转化生长因子-β;MDSCs为髓源性抑制细胞;Tregs为调节性T细胞;N2 TANs为N2型肿瘤相关中性粒细胞;M2 TAMs为M2型肿瘤相关巨噬细胞;NK为自然杀伤细胞;CD8+ T为CD8阳性T细胞。
1 | Matzner P, Sandbank E, Neeman E, et al. Harnessing cancer immunotherapy during the unexploited immediate perioperative period[J]. Nat Rev Clin Oncol, 2020, 17(5): 313. |
2 | Colleoni M, Sun Z, Price KN, et al. Annual hazard rates of recurrence for breast cancer during 24 years of follow-up: results from the international breast cancer study group trials I to V[J]. J Clin Oncol, 2016, 34(9): 927. |
3 | Tsilimigras DI, Bagante F, Moris D, et al. Recurrence patterns and outcomes after resection of hepatocellular carcinoma within and beyond the Barcelona clinic liver cancer criteria[J]. Ann Surg Oncol, 2020, 27(7): 2321. |
4 | Tohme S, Yazdani HO, Al-Khafaji AB, et al. Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress[J]. Cancer Res, 2016, 76(6): 1367. |
5 | Chen Z, Zhang P, Xu Y, et al. Surgical stress and cancer progression: the twisted tango[J]. Mol Cancer, 2019, 18(1): 132. |
6 | Cheng X, Zhang H, Hamad A, et al. Surgery-mediated tumor-promoting effects on the immune microenvironment[J]. Semin Cancer Biol, 2022, 86(Pt 3): 408. |
7 | Mahvi DA, Liu R, Grinstaff MW, et al. Local cancer recurrence: the realities, challenges, and opportunities for new therapies[J]. CA Cancer J Clin, 2018, 68(6): 488. |
8 | Mohme M, Riethdorf S, Pantel K. Circulating and disseminated tumour cells - mechanisms of immune surveillance and escape[J]. Nat Rev Clin Oncol, 2017, 14(3): 155. |
9 | Albrengues J, Shields MA, Ng D, et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice[J]. Science, 2018, 361(6409): eaao4227. |
10 | Dillekås H, Rogers MS, Straume O. Are 90% of deaths from cancer caused by metastases?[J]. Cancer Med, 2019, 8(12): 5574. |
11 | Xu M, Hu K, Liu Y, et al. Systemic metastasis-targeted nanotherapeutic reinforces tumor surgical resection and chemotherapy[J]. Nat Commun, 2021, 12(1): 3187. |
12 | Walens A, Lin J, Damrauer JS, et al. Adaptation and selection shape clonal evolution of tumors during residual disease and recurrence[J]. Nat Commun, 2020, 11(1): 5017. |
13 | Hiller JG, Perry NJ, Poulogiannis G, et al. Perioperative events influence cancer recurrence risk after surgery[J]. Nat Rev Clin Oncol, 2018, 15(4): 205. |
14 | Neeman E, Ben-Eliyahu S. Surgery and stress promote cancer metastasis: new outlooks on perioperative mediating mechanisms and immune involvement[J]. Brain Behav Immun, 2013, 30 Suppl(Suppl): S32. |
15 | Kim R. Effects of surgery and anesthetic choice on immunosuppression and cancer recurrence[J]. J Transl Med, 2018, 16(1): 8. |
16 | Sloan EK, Priceman SJ, Cox BF, et al. The sympathetic nervous system induces a metastatic switch in primary breast cancer[J]. Cancer Res, 2010, 70(18): 7042. |
17 | Le CP, Nowell CJ, Kim-Fuchs C, et al. Chronic stress in mice remodels lymph vasculature to promote tumour cell dissemination[J]. Nat Commun, 2016, 7: 10634. |
18 | Rosenne E, Sorski L, Shaashua L, et al.In vivosuppression of NK cell cytotoxicity by stress and surgery: glucocorticoids have a minor role compared to catecholamines and prostaglandins[J]. Brain Behav Immun, 2014, 37: 207. |
19 | Haldar R, Ricon-Becker I, Radin A, et al. Perioperative COX2 and β-adrenergic blockade improves biomarkers of tumor metastasis, immunity, and inflammation in colorectal cancer: a randomized controlled trial[J]. Cancer, 2020, 126(17): 3991. |
20 | Hashemi Goradel N, Najafi M, Salehi E, et al. Cyclooxygenase-2 in cancer: a review[J]. J Cell Physiol, 2019, 234(5): 5683. |
21 | Thaker PH, Han LY, Kamat AA, et al. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma[J]. Nat Med, 2006, 12(8): 939. |
22 | Hondermarck H, Jobling P. The sympathetic nervous system drives tumor angiogenesis[J]. Trends Cancer, 2018, 4(2): 93. |
23 | McCrath DJ, Cerboni E, Frumento RJ, et al. Thromboelastography maximum amplitude predicts postoperative thrombotic complications including myocardial infarction[J]. Anesth Analg, 2005, 100(6): 1576. |
24 | Chiang SPH, Cabrera RM, Segall JE. Tumor cell intravasation[J]. Am J Physiol Cell Physiol, 2016, 311(1): C1. |
25 | Seth R, Tai LH, Falls T, et al. Surgical stress promotes the development of cancer metastases by a coagulation-dependent mechanism involving natural killer cells in a murine model[J]. Ann Surg, 2013, 258(1): 158. |
26 | Palumbo JS, Talmage KE, Massari JV, et al. Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells[J]. Blood, 2005, 105(1): 178. |
27 | Ren J, He J, Zhang H, et al. Platelet TLR4-ERK5 axis facilitates NET-Mediated capturing of circulating tumor cells and distant metastasis after surgical stress[J]. Cancer Res, 2021, 81(9): 2373. |
28 | Sylman JL, Mitrugno A, Tormoen GW, et al. Platelet count as a predictor of metastasis and venous thromboembolism in patients with cancer[J]. Converg Sci Phys Oncol, 2017, 3(2): 023001. |
29 | Peiseler M, Kubes P. More friend than foe: the emerging role of neutrophils in tissue repair[J]. J Clin Invest, 2019, 129(7): 2629. |
30 | Chen Q, Zhang L, Li X, et al. Neutrophil extracellular traps in tumor metastasis: pathological functions and clinical applications[J]. Cancers (Basel), 2021, 13(11): 2832. |
31 | Kalogeris T, Baines CP, Krenz M, et al. Ischemia/reperfusion[J]. Compr Physiol, 2016, 7(1): 113. |
32 | Selders GS, Fetz AE, Radic MZ, et al. An overview of the role of neutrophils in innate immunity, inflammation and host-biomaterial integration[J]. Regen Biomater, 2017, 4(1): 55. |
33 | Zappalà G, McDonald PG, Cole SW. Tumor dormancy and the neuroendocrine system: an undisclosed connection?[J]. Cancer Metastasis Rev, 2013, 32(1/2): 189. |
34 | Erpenbeck L, Schön MP. Neutrophil extracellular traps: protagonists of cancer progression?[J]. Oncogene, 2017, 36(18): 2483. |
35 | Derynck R, Turley SJ, Akhurst RJ. TGFβ biology in cancer progression and immunotherapy[J]. Nat Rev Clin Oncol, 2021, 18(1): 9. |
36 | Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment[J]. Cell, 2010, 141(1): 52. |
37 | Batlle E, Massagué J. Transforming growth factor-β signaling in immunity and cancer[J]. Immunity, 2019, 50(4): 924. |
38 | Van Der Bij GJ, Oosterling SJ, Beelen RH, et al. The perioperative period is an underutilized window of therapeutic opportunity in patients with colorectal cancer[J]. Ann Surg, 2009, 249(5): 727. |
39 | Neeman E, Zmora O, Ben-Eliyahu S. A new approach to reducing postsurgical cancer recurrence: perioperative targeting of catecholamines and prostaglandins[J]. Clin Cancer Res, 2012, 18(18): 4895. |
40 | Sorski L, Melamed R, Matzner P, et al. Reducing liver metastases of colon cancer in the context of extensive and minor surgeries through β-adrenoceptors blockade and COX2 inhibition[J]. Brain Behav Immun, 2016, 58: 91. |
41 | Krall JA, Reinhardt F, Mercury OA, et al. The systemic response to surgery triggers the outgrowth of distant immune-controlled tumors in mouse models of dormancy[J]. Sci Transl Med, 2018, 10(436): eaan3464. |
42 | Tai LH, de Souza CT, Bélanger S, et al. Preventing postoperative metastatic disease by inhibiting surgery-induced dysfunction in natural killer cells[J]. Cancer Res, 2013, 73(1): 97. |
43 | Tang F, Tie Y, Tu C, et al. Surgical trauma-induced immunosuppression in cancer: recent advances and the potential therapies[J]. Clin Transl Med, 2020, 10(1): 199. |
44 | Predina J, Eruslanov E, Judy B, et al. Changes in the local tumor microenvironment in recurrent cancers may explain the failure of vaccines after surgery[J]. Proc Natl Acad Sci U S A, 2013, 110(5): E415. |
45 | Phillips JD, Knab LM, Blatner NR, et al. Preferential expansion of pro-inflammatory Tregs in human non-small cell lung cancer[J]. Cancer Immunol Immunother, 2015, 64(9): 1185. |
46 | Saito Y, Shimada M, Utsunomiya T, et al. Regulatory T cells in the blood: a new marker of surgical stress[J]. Surg Today, 2013, 43(6): 608. |
47 | Wang B, Zhang Z, Liu W, et al. Targeting regulatory T cells in gastric cancer: pathogenesis, immunotherapy, and prognosis[J]. Biomed Pharmacother, 2023, 158: 114180. |
48 | Wang Y, Ding Y, Guo N, et al. MDSCs: key criminals of tumor pre-metastatic niche formation[J]. Front Immunol, 2019, 10: 172. |
49 | Veglia F, Sanseviero E, Gabrilovich DI. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity[J]. Nat Rev Immunol, 2021, 21(8): 485. |
50 | Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system[J]. Nat Rev Immunol, 2009, 9(3): 162. |
51 | Lu Z, Zou J, Li S, et al. Epigenetic therapy inhibits metastases by disrupting premetastatic niches[J]. Nature, 2020, 579(7798): 284. |
52 | Wang J, Yang L, Yu L, et al. Surgery-induced monocytic myeloid-derived suppressor cells expand regulatory T cells in lung cancer[J]. Oncotarget, 2017, 8(10): 17050. |
53 | Brecht K, Weigert A, Hu J, et al. Macrophages programmed by apoptotic cells promote angiogenesis via prostaglandin E2[J]. FASEB J, 2011, 25(7): 2408. |
54 | Lamkin DM, Srivastava S, Bradshaw KP, et al. C/EBPβ regulates the M2 transcriptome in β-adrenergic-stimulated macrophages[J]. Brain Behav Immun, 2019, 80: 839. |
55 | Pan Y, Yu Y, Wang X, et al. Tumor-associated macrophages in tumor immunity[J]. Front Immunol, 2020, 11: 583084. |
56 | Coffey JC, Smith MJ, Wang JH, et al. Cancer surgery: risks and opportunities[J]. Bioessays, 2006, 28(4): 433. |
57 | Van Der Hage JA, Van De Velde CJ, Julien JP, et al. Improved survival after one course of perioperative chemotherapy in early breast cancer patients. long-term results from the European Organization for Research and Treatment of Cancer (EORTC) Trial 10854[J]. Eur J Cancer, 2001, 37(17): 2184. |
58 | Hua Y, Bergers G. Tumors vs. chronic wounds: an immune cell's perspective[J]. Front Immunol, 2019, 10: 2178. |
59 | Wijeysundera DN, Duncan D, Nkonde-Price C, et al. Perioperative beta blockade in noncardiac surgery: a systematic review for the 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines[J]. J Am Coll Cardiol, 2014, 64(22): 2406. |
60 | Santangelo G, Faggiano A, Toriello F, et al. Risk of cardiovascular complications during non-cardiac surgery and preoperative cardiac evaluation[J]. Trends Cardiovasc Med, 2022, 32(5): 271. |
61 | Cameron D, Piccart-Gebhart MJ, Gelber RD, et al. 11 years' follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive early breast cancer: final analysis of the HERceptin Adjuvant (Hera) trial[J]. Lancet, 2017, 389(10075): 1195. |
62 | Miller KD, O'Neill A, Gradishar W, et al. Double-blind phase Ⅲ trial of adjuvant chemotherapy with and without bevacizumab in patients with lymph node-positive and high-risk lymph node-negative breast cancer (E5103)[J]. J Clin Oncol, 2018, 36(25): 2621. |
[1] | 周谦, 邵一兵, 牛兆倬, 毕晓磊.冠状动脉周围脂肪与冠脉动脉粥样硬化[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(4): 304-312. |
[2] | 董柏萍, 王永生, 吕静静, 韩燕珍, 袁锁伟, 梁永, 毛蕾蕾.基于微小RNA‐146a探究川陈皮素对帕金森病模型的神经保护作用[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(4): 254-259. |
[3] | 王朔, 赵作勤, 张古泉, 张永丽.柿叶黄酮的镇痛抗炎作用及对口腔溃疡大鼠p38MAPK和MMP2/9的调控作用[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(3): 197-201. |
[4] | 王佳琦, 舒强.吡非尼酮联合免疫抑制剂治疗结缔组织病相关肺间质性病变的研究进展[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(4): 304-310. |
[5] | 王宜君, 唐样, 江益凡, 耿志军, 宋雪.RIP激酶家族影响炎症性肠病机制的研究进展[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(3): 3-3. |
[6] | 潘天琦, 田华, 姚树桐.细胞焦亡与自噬的相互关系及其在动脉粥样硬化发生发展中的作用[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(2): 156-160. |
[7] | 廖杰, 杜以梅.术后心房颤动发病机制的研究进展[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(12): 891-896. |
[8] | 张倩, 谢永刚, 马加海, 张建中.6%羟乙基淀粉130/0.4对创伤性蛋白微血管渗漏影响的研究进展[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(11): 856-859. |
[9] | 韦忠丽.通腑消毒饮灌肠、外敷联合埃索美拉唑对重症急性胰腺炎患者肠黏膜屏障功能、炎症状态的影响[J]. betway必威登陆网址 (betway.com )学报, 2021, 42(8): 602-605. |
[10] | 徐子龙, 耿志军, 李静.粪菌移植在肠道疾病临床应用中的研究进展[J]. betway必威登陆网址 (betway.com )学报, 2021, 42(7): 551-555. |
[11] | 赵梦秋, 任尤楠, 陶善珺, 郑书国.丹酚酸B改善糖尿病血糖波动模型大鼠心肌损伤的作用[J]. betway必威登陆网址 (betway.com )学报, 2021, 42(5): 369-374. |
[12] | 陈蕊, 张俊勇, 赵琪.炎症标志物与消化系统恶性肿瘤相关性的研究进展[J]. betway必威登陆网址 (betway.com )学报, 2021, 42(4): 317-320. |
[13] | 戴文玲.针药结合治疗急性胰腺炎的临床效果研究[J]. betway必威登陆网址 (betway.com )学报, 2021, 42(4): 308-311. |
[14] | 张晓, 高芸, 李雪华, 田红.纤维支气管镜吸痰灌洗治疗对重症肺炎患者的疗效及炎症标志物水平的影响[J]. betway必威登陆网址 (betway.com )学报, 2021, 42(3): 203-206. |
[15] | 彭文育.布地奈德和硫酸特布他林联合雾化吸入治疗婴幼儿毛细支气管炎的疗效观察[J]. betway必威登陆网址 (betway.com )学报, 2021, 42(11): 853-856. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||