betway必威登陆网址 (betway.com )学报››2023,Vol. 44››Issue (10): 779-784.DOI:10.3969/j.issn.2097-0005.2023.10.013
• 综述 •上一篇
收稿日期:
2023-05-09出版日期:
2023-10-25发布日期:
2023-12-12通讯作者:
韩波作者简介:
张新悦,硕士研究生,研究方向:小儿心脏科,E-mail:zxy1349322924@163.com。基金资助:
Received:
2023-05-09Online:
2023-10-25Published:
2023-12-12Contact:
Bo HAN摘要:
微小RNA(microRNA, miRNA)是一类进化上保守、单链的内源性非编码RNA,可参与多种疾病的发生发展,并参与心脏发育,在心脏重塑、心力衰竭、冠心病、高血压病等方面的研究不断取得新进展。病毒性心肌炎是一种常见的心血管疾病,多由柯萨奇病毒B3(Coxsackie virus B3, CVB3)感染引起,其发病机制目前仍未明确。多项研究表明,miRNAs与CVB3的感染、心脏的免疫应答以及心肌细胞凋亡等均相关,在病毒性心肌炎的发病中起重要调控作用,并可作为新的诊断标志物与治疗靶点。本文就miRNAs在病毒性心肌炎中的研究进展进行综述。
张新悦, 韩波. 微小RNA在病毒性心肌炎中的研究进展[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(10): 779-784.
Xinyue ZHANG, Bo HAN. Advances in the study of miRNAs in viral myocarditis[J]. Journal of Shandong First Medical Unversity & Shandong Academy of Medical Sciences, 2023, 44(10): 779-784.
1 | Fung G, Luo H, Qiu Y, et al. Myocarditis [J].Circ Res,2016,118(3): 496. |
2 | Lampejo T, Durkin SM, Bhatt N, et al. Acute myocarditis: aetiology, diagnosis and management [J].Clin Med (Lond),2021,21(5): e505. |
3 | Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 [J].Cell,1993,75(5): 843. |
4 | Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase Ⅱ [J].EMBO J,2004,23(20): 4051. |
5 | Lee Y, Ahn C, Han J, et al. The nuclear RNase Ⅲ Drosha initiates microRNA processing [J].Nature,2003,425(6956): 415. |
6 | Denli AM, Tops BB, Plasterk RH, et al. Processing of primary microRNAs by the Microprocessor complex [J].Nature,2004,432(7014): 231. |
7 | Han J, Lee Y, Yeom KH, et al. The Drosha-DGCR8 complex in primary microRNA processing [J].Genes Dev,2004,18(24): 3016. |
8 | Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs [J].RNA,2004,10(2): 185. |
9 | Ketting RF, Fischer SE, Bernstein E, et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans [J].Genes Dev,2001,15(20): 2654. |
10 | Kobayashi H, Tomari Y. RISC assembly:coordination between small RNAs and Argonaute proteins [J].Biochim Biophys Acta,2016,1859(1): 71. |
11 | Bartel DP. MicroRNAs: target recognition and regulatory functions [J].Cell,2009,136(2): 215. |
12 | Liu J, Valencia-Sanchez MA, Hannon GJ, et al. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies [J].Nat Cell Biol,2005,7(7): 719. |
13 | Llave C, Xie Z, Kasschau KD, et al. Cleavage of scarecrow-like mRNA targets directed by a class ofArabidopsismiRNA [J].Science,2002,297(5589): 2053. |
14 | Helwak A, Kudla G, Dudnakova T, et al. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding[J].Cell,2013,153(3): 654. |
15 | Xiao M, Li J, Li W, et al. MicroRNAs activate gene transcription epigenetically as an enhancer trigger[J].RNA Biol,2017,14(10): 1326. |
16 | Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation [J].Science,2007,318(5858): 1931. |
17 | Small EM, Olson EN. Pervasive roles of microRNAs in cardiovascular biology [J].Nature,2011,469(7330): 336. |
18 | Thum T, Catalucci D, Bauersachs J. MicroRNAs: novel regulators in cardiac development and disease [J].Cardiovasc Res,2008,79(4): 562. |
19 | Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis [J].Nature,2005,436(7048): 214. |
20 | Carè A, Catalucci D, Felicetti F, et al. MicroRNA-133 controls cardiac hypertrophy [J].Nat Med,2007,13(5): 613. |
21 | Da Costa Martins PA, Bourajjaj M, Gladka M, et al. Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling [J].Circulation,2008,118(15): 1567. |
22 | Gauntt C, Huber S. Coxsackievirus experimental heart diseases [J].Front Biosci,2003,8: e23. |
23 | Wang L, Qin Y, Tong L, et al. MiR-342-5p suppresses coxsackievirus B3 biosynthesis by targeting the 2C-coding region [J].Antiviral Res,2012,93(2): 270. |
24 | Corsten MF, Heggermont W, Papageorgiou AP, et al. The microRNA-221/-222 cluster balances the antiviral and inflammatory response in viral myocarditis [J].Eur Heart J,2015,36(42): 2909. |
25 | He F, Xiao Z, Yao H, et al. The protective role of microRNA-21 against coxsackievirus B3 infection through targeting the MAP2K3/P38 MAPK signaling pathway[J].J Transl Med,2019,17(1): 335. |
26 | Yang Q, Li Y, Wang Y, et al. The circRNA circSIAE inhibits replication of coxsackie virus B3 by targeting miR-331-3p and thousand and one amino-acid kinase 2 [J].Front Cell Infect Microbiol,2022,11: 779919. |
27 | Tong L, Lin L, Wu S, et al. MiR-10a* up-regulates coxsackievirus B3 biosynthesis by targeting the 3D-coding sequence [J].Nucleic Acids Res,2013,41(6): 3760. |
28 | Hemida MG, Ye X, Zhang HM, et al. MicroRNA-203 enhances coxsackievirus B3 replication through targeting zinc finger protein-148 [J].Cellular and Molecular Life Sciences,2013,70(2): 277. |
29 | Ye X, Hemida MG, Qiu Y, et al. MiR-126 promotes coxsackievirus replication by mediating cross-talk of ERK1/2 and Wnt/β-catenin signal pathways [J].Cell Mol Life Sci,2013,70(23): 4631. |
30 | Li J, Xie Y, Li L, et al. MicroRNA-30a modulates type I interferon responses to facilitate coxsackievirus B3 replication via targeting tripartite motif protein 25[J].Front Immunol,2020,11: 603437. |
31 | Liu T, Li Y, Chen S, et al. CircDDX17 enhances coxsackievirus B3 replication through regulating miR-1248/NOTCH receptor 2 axis [J].Front Microbiol,2022,13: 1012124. |
32 | Zhuang G, Meng C, Guo X, et al. A novel regulator of macrophage activation: miR-223 in obesity-associated adipose tissue inflammation [J].Circulation,2012,125(23): 2892. |
33 | Gou W, Zhang Z, Yang C, et al. MiR-223/pknox1 axis protects mice from CVB3-induced viral myocarditis by modulating macrophage polarization [J].Exp Cell Res,2018,366(1): 41. |
34 | Garmaroudi FS, Marchant D, Hendry R, et al. Coxsackievirus B3 replication and pathogenesis [J].Future Microbiol,2015,10(4): 629. |
35 | Cao Y, Xu W, Xiong S. Adoptive transfer of regulatory T cells protects against Coxsackievirus B3-induced cardiac fibrosis [J].PLoS One,2013,8(9): e74955. |
36 | Guo YE, Riley KJ, Iwasaki A, et al. Alternative capture of noncoding RNAs or protein-coding genes by herpesviruses to alter host T cell function [J].Mol Cell,2014,54(1): 67. |
37 | Cho S, Wu CJ, Yasuda T, et al.miR-23∼27∼24 clusters control effector T cell differentiation and function[J].J Exp Med,2016,213(2): 235. |
38 | Cruz LO, Hashemifar SS, Wu CJ, et al. Excessive expression of miR-27 impairs Treg-mediated immunological tolerance [J].J Clin Invest,2017,127(2): 530. |
39 | Mikami Y, Philips RL, Sciumè G, et al. MicroRNA-221 and -222 modulate intestinal inflammatory Th17 cell response as negative feedback regulators downstream of interleukin-23 [J].Immunity,2021,54(3): 514. |
40 | Ichiyama K, Gonzalez-Martin A, Kim BS, et al. The MicroRNA-183-96-182 cluster promotes T helper 17 cell pathogenicity by negatively regulating transcription factor Foxo1 expression [J].Immunity,2016,44(6): 1284. |
41 | Tong R, Jia T, Shi R, et al. Inhibition of microRNA-15 protects H9c2 cells against CVB3-induced myocardial injury by targeting NLRX1 to regulate the NLRP3 inflammasome [J].Cell Mol Biol Lett,2020,25: 6. |
42 | Liao Y, Chen KH, Dong XM, et al. A role of pre-mir-10a coding region variant in host susceptibility to coxsackie virus-induced myocarditis [J].Eur Rev Med Pharmacol Sci,2015,19(18): 3500. |
43 | Zhang Y, Sun L, Sun H, et al. Overexpression of microRNA-133b reduces myocardial injuries in children with viral myocarditis by targeting Rab27B gene [J].Cell Mol Biol (Noisy-le-grand),2017,63(10): 80. |
44 | Jiang D, Li M, Yu Y, et al. microRNA-34a aggravates coxsackievirus B3-induced apoptosis of cardiomyocytes through the SIRT1-p53 pathway [J].J Med Virol,2019,91(9): 1643. |
45 | Xia K, Zhang Y, Sun D. miR‑217 and miR‑543 downregulation mitigates inflammatory response and myocardial injury in children with viral myocarditis by regulating the SIRT1/AMPK/NF‑κB signaling pathway [J].Int J Mol Med,2020,45(2): 634. |
46 | Zhang X, Gao X, Hu J, et al. ADAR1p150 forms a complex with dicer to promote miRNA-222 activity and regulate PTEN expression in CVB3-induced viral myocarditis [J].Int J Mol Sci,2019,20(2): 407. |
47 | Li J, Tu J, Gao H, et al. MicroRNA-425-3p inhibits myocardial inflammation and cardiomyocyte apoptosis in mice with viral myocarditis through targeting TGF-β1[J].Immun Inflamm Dis,2021,9(1): 288. |
48 | Li W, Liu M, Zhao C, et al. MiR-1/133 attenuates cardiomyocyte apoptosis and electrical remodeling in mice with viral myocarditis [J].Cardiol J,2020,27(3): 285. |
49 | Rao PK, Toyama Y, Chiang HR, et al. Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure [J].Circ Res,2009,105(6): 585. |
50 | Corsten MF, Papageorgiou A, Verhesen W, et al. MicroRNA profiling identifies microRNA-155 as an adverse mediator of cardiac injury and dysfunction during acute viral myocarditis [J].Circ Res,2012,111(4): 415. |
51 | Zhang BY, Zhao Z, Jin Z. Expression of miR-98 in myocarditis and its influence on transcription of the FAS/FASL gene pair [J].Genet Mol Res,2016,15(2): gmr.15027627. |
52 | He J, Yue Y, Dong C, et al. MiR-21 confers resistance against CVB3-induced myocarditis by inhibiting PDCD4-mediated apoptosis [J].Clin Invest Med,2013,36(2): E103. |
53 | Zhang Y, Cai S, Ding X, et al. MicroRNA-30a-5p silencing polarizes macrophages toward M2 phenotype to alleviate cardiac injury following viral myocarditis by targeting SOCS1 [J].Am J Physiol Heart Circ Physiol,2021,320(4): H1348. |
54 | Zhang Y, Zhang M, Li X, et al. Silencing MicroRNA-155 attenuates cardiac injury and dysfunction in viral myocarditis via promotion of M2 phenotype polarization of macrophages [J].Sci Rep,2016,6: 22613. |
55 | Liu YL, Wu W, Xue Y, et al. MicroRNA-21 and -146b are involved in the pathogenesis of murine viral myocarditis by regulating TH-17 differentiation [J].Arch Virol,2013,158(9): 1953. |
56 | Yan L, Hu F, Yan X, et al. Inhibition of microRNA-155 ameliorates experimental autoimmune myocarditis by modulating Th17/Treg immune response [J].J Mol Med (Berl),2016,94(9): 1063. |
57 | Zhang Z, Dai X, Qi J, et al.Astragalusmongholicus(Fisch.)Bgeimproves peripheral Treg cell immunity imbalance in the children with viral myocarditis by reducing the levels of miR-146b and miR-155 [J].Front Pediatr,2018,6: 139. |
58 | Goldberg L, Tirosh-Wagner T, Vardi A, et al. Circulating MicroRNAs: a potential biomarker for cardiac damage, inflammatory response, and left ventricular function recovery in pediatric viral myocarditis [J].J Cardiovasc Transl Res,2018,11(4): 319. |
59 | Nie X, He M, Wang J, et al. Circulating miR-4763-3p is a novel potential biomarker candidate for human adult fulminant myocarditis [J].Mol Ther Methods Clin Dev,2020,17: 1079. |
60 | Marketou M, Kontaraki J, Patrianakos A, et al. Peripheral blood MicroRNAs as potential biomarkers of myocardial damage in acute viral myocarditis [J].Genes (Basel),2021,12(3): 420. |
61 | Zhang Y, Li X, Wang D, et al. Serum exosome microRNA panel as a noninvasive biomarker for molecular diagnosis of fulminant myocarditis [J].Mol Ther Methods Clin Dev,2021,20: 142. |
62 | Blanco-Domínguez R, Sánchez-Díaz R, De La Fuente H, et al. A novel circulating MicroRNA for the detection of acute myocarditis [J].N Engl J Med,2021,384(21): 2014. |
63 | Wang Y, Li J, Xuan L, et al.Astragalusroot dry extract restores connexin43 expression by targeting miR-1 in viral myocarditis [J].Phytomedicine,2018,46: 32. |
64 | Bao JL, Lin L. MiR-155 and miR-148a reduce cardiac injury by inhibiting NF-κB pathway during acute viral myocarditis [J].Eur Rev Med Pharmacol Sci,2014,18(16): 2349. |
65 | He F, Yao H, Wang J, et al. Coxsackievirus B3 engineered to contain microRNA targets for muscle-specific microRNAs displays attenuated cardiotropic virulence in mice [J].J Virol,2015,89(2): 908. |
[1] | 杨儒林, 韩波.心肌炎中的诊断标志物研究进展[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(7): 522-525. |
[2] | 蒋鲁杰, 王燕, 邓仰欣, 曹铭锋.微小RNA在早期糖尿病肾病中的研究进展[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(6): 452-456. |
[3] | 董柏萍, 王永生, 吕静静, 韩燕珍, 袁锁伟, 梁永, 毛蕾蕾.基于微小RNA‐146a探究川陈皮素对帕金森病模型的神经保护作用[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(4): 254-259. |
[4] | 黄永胜, 黄彩娜, 董学岭, 卓秀丽, 房娟娟, 宋文霞, 张雨露, 阎磊, 陈刚, 吕仁广.膀胱尿路上皮癌蛋白组学相关个体化预后特征的推导与验证[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(1): 15-23. |
[5] | 郑培贤, 李娜, 詹显全.以表型组为重心的垂体瘤多组学研究[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(9): 641-665. |
[6] | 刘艺, 任小梅, 田茂良.3种不同柯萨奇病毒所致手足口病的临床特征分析[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(4): 277-281. |
[7] | 胡菲菲, 辛静昕, 张新焕.miRNA对糖尿病脑病的临床意义[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(2): 148-155. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||