betway必威登陆网址 (betway.com )学报››2022,Vol. 43››Issue (2): 148-155.DOI:10.3969/j.issn.2097-0005.2022.02.014
收稿日期:
2021-09-26出版日期:
2022-02-25发布日期:
2022-03-18通讯作者:
张新焕作者简介:
胡菲菲,硕士研究生,研究方向:内分泌,E-mail:724642385@qq.com第一联系人:。基金资助:
Feifei HU1(), Jingxin XIN1, Xinhuan ZHANG2(
)
Received:
2021-09-26Online:
2022-02-25Published:
2022-03-18Contact:
Xinhuan ZHANG摘要:
糖尿病作为一种复杂的代谢性疾病,可引起多个系统的并发症,其中糖尿病脑病的发生率近年来逐年上升,严重影响患者的生活质量。微小RNA(miRNA)作为非编码小RNA分子,在包括血清、血浆在内的许多生物体液中以无细胞循环形式稳定存在,并在组织稳定和疾病进展中发挥重要作用。由于某些miRNA的变化是细胞类型或组织特异性的,因此可以通过分析循环血液中的miRNA来识别组织功能障碍,此外miRNA还可作为某些疾病的治疗靶点。本综述就miRNA在糖尿病脑病的早期诊断及治疗方面做一综述。
胡菲菲, 辛静昕, 张新焕. miRNA对糖尿病脑病的临床意义[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(2): 148-155.
Feifei HU, Jingxin XIN, Xinhuan ZHANG. The clinical significance of miRNA in diabetic encephalopathy[J]. Journal of Shandong First Medical Unversity & Shandong Academy of Medical Sciences, 2022, 43(2): 148-155.
1 | Zhao LQ, Zheng ZP, Huang P. Diabetes mellitus and the risk of glioma: a meta-analysis[J]. Oncotarget, 2016, 7(4): 4483. |
2 | Dong SY, Li G, Zheng D, et al. A novel role for the calcium sensing receptor in rat diabetic encephalopathy[J]. Cell Physiol Biochem, 2015, 35(1): 38. |
3 | Ashraghi MR, Pagano G, Polychronis S, et al. Parkinson's disease, diabetes and cognitive impairment[J]. Recent Pat Endocr Metab Immune Drug Discov, 2016, 10(1): 11. |
4 | Biessels GJ, Strachan MWJ, Visseren FLJ, et al. Dementia and cognitive decline in type 2 diabetes and prediabetic stages: towards targeted interventions[J]. Lancet Diabetes Endocrinol, 2014, 2(3): 246. |
5 | Cheng G, Huang C, Deng H, et al. Diabetes as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies[J]. Intern Med J, 2012, 42(5): 484. |
6 | Zilliox LA, Chadrasekaran K, Kwan JY, et al. Diabetes and cognitive impairment[J]. Curr Diab Rep, 2016, 16(9): 87. |
7 | Grote CW, Wright DE. A role for insulin in diabetic neuropathy[J]. Front Neurosci, 2016, 10: 581. |
8 | Broderick JA, Zamore PD. MicroRNA therapeutics[J]. Gene Ther, 2011, 18(12): 1104. |
9 | Pereira DM, Rodrigues PM, Borralho PM, et al. Delivering the promise of miRNA cancer therapeutics[J]. Drug Discov Today, 2013, 18(5-6): 282. |
10 | Zampetaki A, Kiechl S, Drozdov I, et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes[J]. Circ Res, 2010, 107(6): 810. |
11 | Zampetaki A, Kiechl S, Drozdov I, et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes[J]. Circ Res, 2010, 107(6): 810. |
12 | Freilich RW, Woodbury ME, Ikezu T. Integrated expression profiles of mRNA and miRNA in polarized primary murine microglia[J]. Plos One, 2013, 8(11): e79416. |
13 | Zhang T, Lv CF, Li LL, et al. Plasma miR-126 is a potential biomarker for early prediction of type 2 diabetes mellitus in susceptible individuals[J]. Biomed Res Int, 2013, 2013: 761617. |
14 | Venkat P, Cui CC, Chopp M, et al. MiR-126 mediates brain endothelial cell exosome treatment-induced neurorestorative effects after stroke in type 2 diabetes mellitus mice[J]. Stroke, 2019, 50(10): 2865. |
15 | Balasubramanyam M, Aravind S, Gokulakrishnan K, et al. Impaired miR-146a expression links subclinical inflammation and insulin resistance in Type 2 diabetes[J]. Mol Cell Biochem, 2011, 351(1-2): 197. |
16 | Baldeón RL, Weigelt K, De Wit H, et al. Decreased serum level of miR-146a as sign of chronic inflammation in type 2 diabetic patients[J]. Plos One, 2014, 9(12): e115209. |
17 | Duan XM, Zhan Q, Song BX, et al. Detection of platelet microRNA expression in patients with diabetes mellitus with or without ischemic stroke[J]. J Diabetes Complications, 2014, 28(5): 705. |
18 | Bhaumik D, Scott GK, Schokrpur S, et al. Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells[J]. Oncogene, 2008, 27(42): 5643. |
19 | Taganov KD, Boldin MP, Chang KJ, et al. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses[J]. Proc Natl Acad Sci U S A, 2006, 103(33): 12481. |
20 | Yang SS, Zhao JF, Chen YX, et al. Biomarkers associated with ischemic stroke in diabetes mellitus patients[J]. Cardiovasc Toxicol, 2016, 16(3): 213. |
21 | Qian Y, Song JL, Ouyang YM, et al. Advances in roles of miR-132 in the nervous system[J]. Front Pharmacol, 2017, 8: 770. |
22 | El Fatimy R, Li SM, Chen ZC, et al. MicroRNA-132 provides neuroprotection for tauopathies via multiple signaling pathways[J]. Acta Neuropathol, 2018, 136(4): 537. |
23 | Bekris LM, Lutz F, Montine TJ, et al. MicroRNA in alzheimer's disease: an exploratory study in brain, cerebrospinal fluid and plasma[J]. Biomarkers, 2013, 18(5): 455. |
24 | Hansen KF, Karelina K, Sakamoto K, et al. miRNA-132: a dynamic regulator of cognitive capacity[J]. Brain Struct Funct, 2013, 218(3): 817. |
25 | Ⅱ Salama, Sami SM, Abdellatif GA, et al. Plasma microRNAs biomarkers in mild cognitive impairment among patients with type 2 diabetes mellitus[J]. Plos One, 2020, 15(7): e0236453. |
26 | Sheikhbahaei S, Manizheh D, Mohammad S, et al. Can MiR-503 be used as a marker in diabetic patients with ischemic stroke?[J]. BMC Endocr Disord, 2019, 19(1): 42. |
27 | 孟开顺, 宋科秀, 王小蕊. miRNA-368 在糖尿病脑病中的表达水平变化及临床意义[J]. 卒中与神经疾病, 2019, 26(6): 706. |
28 | Kalani A, Chaturvedi P, Maldonado C, et al. Dementia-like pathology in type-2 diabetes: a novel microRNA mechanism[J]. Mol Cell Neurosci, 2017, 80: 58. |
29 | Chung E, Ji Y, Sun YJ, et al. Anti-PrPC monoclonal antibody infusion as a novel treatment for cognitive deficits in an Alzheimer's disease model mouse[J]. BMC Neurosci, 2010, 11: 130. |
30 | Gimbel DA, Nygaard HB, Coffey EE, et al. Memory impairment in transgenic Alzheimer mice requires cellular prion protein[J]. J Neurosci, 2010, 30(18): 6367. |
31 | Nakano M, Nagaishi K, Konari N, et al. Bone marrow-derived mesenchymal stem cells improve diabetes-induced cognitive impairment by exosome transfer into damaged neurons and astrocytes[J]. Sci Rep, 2016, 6: 24805. |
32 | Kubota K, Nakano M, Kobayashi E, et al. An enriched environment prevents diabetes-induced cognitive impairment in rats by enhancing exosomal miR-146a secretion from endogenous bone marrow-derived mesenchymal stem cells[J]. Plos One, 2018, 13(9): e0204252. |
33 | Coronas-Samano G, Baker KL, Tan WJ, et al. Fus1 KO Mouse As a Model of oxidative stress-mediated sporadic Alzheimer's disease: circadian disruption and long-term spatial and olfactory memory impairments[J]. Front Aging Neurosci, 2016, 8: 268. |
34 | Mehta V, Parashar A, Udayabanu M. Quercetin prevents chronic unpredictable stress induced behavioral dysfunction in mice by alleviating hippocampal oxidative and inflammatory stress[J]. Physiol Behav, 2017, 171: 69. |
35 | Murai K, Sun GQ, Ye P, et al. The TLX-miR-219 cascade regulates neural stem cell proliferation in neurodevelopment and schizophrenia iPSC model[J]. Nat Commun, 2016, 7: 10965. |
36 | Fukuchi M, Tabuchi A, Kuwana Y, et al. Neuromodulatory effect of Gαs- or Gαq-coupled G-protein-coupled receptor on NMDA receptor selectively activates the NMDA receptor/Ca2+/calcineurin/cAMP response element-binding protein-regulated transcriptional coactivator 1 pathway to effectively induce brain-derived neurotrophic factor expression in neurons[J]. J Neurosci, 2015, 35(14): 5606. |
37 | Zhang YX, Fan M, Wang QZ, et al. Polymorphisms in MicroRNA genes and genes involving in NMDAR signaling and schizophrenia: a case-control study in Chinese Han population[J]. Sci Rep, 2015, 5: 12984. |
38 | Zhang L, Chen ZW, Yang SF, et al. MicroRNA-219 decreases hippocampal long-term potentiation inhibition and hippocampal neuronal cell apoptosis in type 2 diabetes mellitus mice by suppressing the NMDAR signaling pathway[J]. CNS Neurosci Ther, 2019, 25(1): 69. |
39 | Wang SS, Aurora AB, Johnson BA, et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis[J]. Dev Cell, 2008, 15(2): 261. |
40 | Fish JE, Santoro MM, Morton SU, et al. miR-126 regulates angiogenic signaling and vascular integrity[J]. Dev Cell, 2008, 15(2): 272. |
41 | Chen JL, Ning RZ, Zacharek A, et al. MiR-126 contributes to human umbilical cord blood cell-induced neurorestorative effects after stroke in type-2 diabetic mice[J]. Stem Cells, 2016, 34(1): 102. |
42 | Kierdorf K, Wang YE, Neumann H. Immune-mediated CNS damage[J].Results Probl Cell Differ, 2010, 51:173. |
43 | Wang BY, Miao Y, Zhao Z, et al. Inflammatory macrophages promotes development of diabetic encephalopathy[J]. Cell Physiol Biochem, 2015, 36(3): 1142. |
44 | Wang BY, Huang J, Li JB, et al. Control of macrophage autophagy by miR-384-5p in the development of diabetic encephalopathy[J]. Am J Transl Res, 2018, 10(2): 511. |
45 | Baglietto-Vargas D, Shi J, Yaeger DM, et al. Diabetes and alzheimer's disease crosstalk[J]. Neurosci Biobehav Rev, 2016, 64: 272. |
46 | Costa LG, Garrick JM, Roquè PJ, et al. Mechanisms of neuroprotection by quercetin: counteracting oxidative stress and more[J]. Oxid Med Cell Longev, 2016, 2016: 2986796. |
47 | Ebrahimpour S, Esmaeili A, Beheshti S. Effect of quercetin-conjugated superparamagnetic iron oxide nanoparticles on diabetes-induced learning and memory impairment in rats[J]. Int J Nanomedicine, 2018, 13: 6311. |
48 | Ebrahimpour S, Shahidi SB, Abbasi M, et al. Quercetin-conjugated superparamagnetic iron oxide nanoparticles (QCSPIONs) increases Nrf2 expression via miR-27a mediation to prevent memory dysfunction in diabetic rats[J]. Sci Rep, 2020, 10(1): 15957. |
49 | Vassar R. BACE1: the beta-secretase enzyme in Alzheimer's disease[J]. J Mol Neurosci, 2004, 23(1/2): 105. |
50 | Lee HJ, Ryu JM, Jung YH, et al. High glucose upregulates BACE1-mediated Aβ production through ROS-dependent HIF-1α and LXRα/ABCA1-regulated lipid raft reorganization in SK-N-MC cells[J]. Sci Rep, 2016, 6: 36746. |
51 | Hébert SS, Horré K, Nicolaï L, et al. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/beta-secretase expression[J]. Proc Natl Acad Sci U S A, 2008, 105(17): 6415. |
52 | Roshan R, Ghosh T, Gadgil M, et al. Regulation of BACE1 by miR-29a/b in a cellular model of spinocerebellar ataxia 17[J]. RNA Biol, 2012, 9(6): 891. |
53 | Jash K, Gondaliya P, Sunkaria A, et al. MicroRNA-29b modulates β-secretase activity in SH-SY5Y cell line and diabetic mouse brain[J]. Cell Mol Neurobiol, 2020, 40(8): 1367. |
54 | Sharma B, Singh N. Pitavastatin and 4'-hydroxy-3'-methoxyacetophenone (HMAP) reduce cognitive dysfunction in vascular dementia during experimental diabetes[J]. Curr Neurovasc Res, 2010, 7(3): 180. |
55 | Yin S, Bai WW, Li P, et al. Berberine suppresses the ectopic expression of miR-133a in endothelial cells to improve vascular dementia in diabetic rats[J]. Clin Exp Hypertens, 2019, 41(8): 708. |
56 | Abrahám CS, Harada N, Deli MA, et al. Transient forebrain ischemia increases the blood-brain barrier permeability for albumin in stroke-prone spontaneously hypertensive rats[J]. Cell Mol Neurobiol, 2002, 22(4): 455. |
57 | Mecocci P, Parnetti L, Reboldi GP, et al. Blood-brain-barrier in a geriatric population: barrier function in degenerative and vascular dementias[J]. Acta Neurol Scand, 1991, 84(3): 210. |
58 | Wolburg H, Lippoldt A. Tight junctions of the blood-brain barrier: development, composition and regulation[J]. Vascul Pharmacol, 2002, 38(6): 323. |
59 | Song JY, Yoon SR, Kim OY. miR-Let7A controls the cell death and tight junction density of brain endothelial cells under high glucose condition[J]. Oxid Med Cell Longev, 2017, 2017: 6051874. |
60 | Shrivats AR, Hsu E, Averick S, et al. Cationic nanogel-mediated runx2 and osterix sirna delivery decreases mineralization in MC3T3 cells[J]. Clin Orthop Relat Res, 2015, 473(6): 2139. |
61 | Han JH, Liu XN, Li YZ, et al. Sirt1/Nrf2 signalling pathway prevents cognitive impairment in diabetic rats through anti-oxidative stress induced by miRNA-23b-3p expression[J]. Mol Med Rep, 2018, 17(6): 8414. |
62 | Ozeki N, Hase N, Hiyama T, et al. MicroRNA-211 and autophagy-related gene 14 signaling regulate osteoblast-like cell differentiation of human induced pluripotent stem cells[J]. Exp Cell Res, 2017, 352(1): 63. |
63 | Li PF, Sun N, Zeng JC, et al. Differential expression of miR-672-5p and miR-146a-5p in osteoblasts in rats after steroid intervention[J]. Gene, 2016, 591(1): 69. |
64 | Zheng JJ, Lin Z, Dong PH, et al. Activation of hepatic stellate cells is suppressed by microRNA-150[J]. Int J Mol Med, 2013, 32(1): 17. |
65 | Zhao SZ, Li T, Li J, et al. miR-23b-3p induces the cellular metabolic memory of high glucose in diabetic retinopathy through a SIRT1-dependent signalling pathway[J]. Diabetologia, 2016, 59(3): 644. |
66 | Sun Q, Zeng QC, Chen YQ, et al. Long intergenic noncoding RNA p21 suppresses the apoptosis of hippocampus neurons in streptozotocin-diabetic mice by sponging microRNA-221 through upregulation of FOS[J]. J Cell Physiol, 2019, 234(11): 21113. |
67 | Lustig Y, Barhod E, Ashwal-Fluss R, et al. RNA-binding protein PTB and microRNA-221 coregulate AdipoR1 translation and adiponectin signaling[J]. Diabetes, 2014, 63(2): 433. |
68 | Meerson A, Traurig M, Ossowski V, et al. Human adipose microRNA-221 is upregulated in obesity and affects fat metabolism downstream of leptin and TNF-α[J]. Diabetologia, 2013, 56(9): 1971. |
69 | Zhao D, Deng SC, Ma Y, et al. miR-221 alleviates the inflammatory response and cell apoptosis of neuronal cell through targeting TNFAIP2 in spinal cord ischemia-reperfusion[J]. Neuroreport, 2018, 29(8): 655. |
70 | Kemp A, Tischmeyer W, Manahan-Vaughan D. Learning-facilitated long-term depression requires activation of the immediate early gene, c-FOS, and is transcription dependent[J]. Behav Brain Res, 2013, 254: 83. |
71 | Rawat V, Goux W, Piechaczyk M, et al. c-FOS protects neurons through a noncanonical mechanism involving hdac3 interaction: identification of a 21-amino acid fragment with neuroprotective activity[J]. Mol Neurobiol, 2016, 53(2): 1165. |
72 | Errico MC, Felicetti F, Bottero L, et al. The abrogation of the HOXB7/PBX2 complex induces apoptosis in melanoma through the miR-221&222-c-FOS pathway[J]. Int J Cancer, 2013, 133(4): 879. |
73 | Chen SY, Liang HR, Yang H, et al. LincRNa-p21: function and mechanism in cancer[J]. Med Oncol, 2017, 34(5): 98. |
74 | Chen SC, Wang MD, Yang H, et al. LncRNA TUG1 sponges microRNA-9 to promote neurons apoptosis by up-regulated Bcl2l11 under ischemia[J]. Biochem Biophys Res Commun, 2017, 485(1): 167. |
75 | Huarte M, Guttman M, Feldser D, et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response[J]. Cell, 2010, 142(3): 409. |
76 | Özgür E, Mert U, Isin M, et al. Differential expression of long non-coding RNAs during genotoxic stress-induced apoptosis in HeLa and MCF-7 cells[J]. Clin Exp Med, 2013, 13(2): 119. |
77 | Liu DZ, Tian YF, Ander BP, et al. Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures[J]. J Cereb Blood Flow Metab, 2010, 30(1): 92. |
78 | Hunsberger JG, Fessler EB, Wang ZF, et al. Post-insult valproic acid-regulated microRNAs: potential targets for cerebral ischemia[J]. Am J Transl Res, 2012, 4(3): 316. |
79 | 韩江全, 卢俊江, 向灿辉, 等. MicroRNA-155对糖尿病大鼠脑缺血损伤血管再生的调控[J]. 中国病理生理杂志, 2015, 31(2): 354. |
80 | Lee CZ, Xue Z, Hao Q, et al. Nitric oxide in vascular endothelial growth factor-induced focal angiogenesis and matrix metalloproteinase-9 activity in the mouse brain[J]. Stroke, 2009, 40(8): 2879. |
81 | 韩江全, 吴俊雄, 胡泳涛, 等. 超负荷血糖对鼠局灶性脑缺血侧皮质内皮抑素表达的影响[J]. 中风与神经疾病杂志, 2012, 29(4): 321. |
82 | Ojo O, Brooke J. Evaluating the association between diabetes, cognitive decline and dementia[J]. Int J Environ Res Public Health, 2015, 12(7): 8281. |
83 | Salama II, Salama SI, Elmosalami DM, et al. Risk factors associated with mild cognitive impairment among apparently healthy people and the role of MicroRNAs[J]. Open Access Maced J Med Sci, 2019, 7(19): 3253. |
[1] | 梁梅, 江建烨, 毛瑞奎, 饶小胖.糖尿病肾脏疾病与甲状腺功能状态的相关性[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(9): 670-674. |
[2] | 王森, 张艺馨, 赵玉立, 郭慧敏, 封丽.超声在代谢相关脂肪性肝病及相关疾病诊断中的应用[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(9): 691-695. |
[3] | 蒋鲁杰, 王燕, 邓仰欣, 曹铭锋.微小RNA在早期糖尿病肾病中的研究进展[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(6): 452-456. |
[4] | 董柏萍, 王永生, 吕静静, 韩燕珍, 袁锁伟, 梁永, 毛蕾蕾.基于微小RNA‐146a探究川陈皮素对帕金森病模型的神经保护作用[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(4): 254-259. |
[5] | 高猛, 张迎华.超声新技术评估妊娠期糖尿病胎儿心功能研究进展[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(4): 317-320. |
[6] | 杭宇昕, 于佳琦, 曹燕凤, 徐宁, 刘景林, 许良.基于网络药理学探讨蒙药翻白草治疗2型糖尿病的作用机制[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(3): 191-196. |
[7] | 温金, 李宁, 李梓汇, 马智颖, 毛海婷.细胞焦亡与不良妊娠结局关系研究进展[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(1): 10-14. |
[8] | 郭浩阳, 汪伟, 常鑫, 金岳龙, 袁慧.类风湿关节炎与2型糖尿病风险的两样本孟德尔随机化研究[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(9): 703-706. |
[9] | 岳峰, 高云, 刘雯, 张姝婧.2型糖尿病中青年男性胆固醇水平与骨代谢的相关性[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(8): 605-608. |
[10] | 杨立芸.个体化护理在早期糖尿病肾病患者中的应用[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(8): 609-613. |
[11] | 孙辉, 杭洪霞.空腹血糖调节受损老年患者的社区健康管理效果[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(7): 529-533. |
[12] | 陶瑜, 王波, 于金凤, 牟肖莉, 韩存永, 张颜明, 庞书勤.1例以急性胃扩张为首发症状的糖尿病酮症酸中毒患者的诊断并文献复习[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(6): 459-461. |
[13] | 张青青, 刘珊珊, 王英惠, 柳刚.达格列净治疗慢性肾脏病的研究进展[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(5): 388-392. |
[14] | 李慧慧, 刘蕴玲.老年T2DM合并高血压患者血清25(OH)D水平与抑郁情绪关系[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(5): 353-359. |
[15] | 邹剑飞, 章如山, 王瑞, 张旭, 徐亚萍, 应筱雯, 陈星, 唐根富.安庆市农村老年高血压患者睡眠时间和糖尿病的相关性分析[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(3): 226-229. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||