betway必威登陆网址 (betway.com )学报››2023,Vol. 44››Issue (11): 819-825.DOI:10.3969/j.issn.2097-0005.2023.11.004
• 基础研究 •上一篇
收稿日期:
2023-09-04出版日期:
2023-11-25发布日期:
2024-01-22通讯作者:
于德新作者简介:
陈治宇,学士,初级技师,研究方向:医学影像技术应用及数据处理,E-mail:Chenzy581X@163.com。Zhiyu CHEN1(), Han XU2, Dexin YU1(
)
Received:
2023-09-04Online:
2023-11-25Published:
2024-01-22Contact:
Dexin YU摘要:
目的通过生物信息学分析筛选影响卵巢癌(ovarian cancer, OC)患者总体生存率的铁死亡相关基因(ferroptosis-related genes, FRGs)。方法通过癌症基因组图谱公共数据库(the cancer genome altas, TCGA) 和基因组织表达数据库(genotype-tissue expression, GTEx)下载OC患者的mRNA表达谱和相应的临床数据,使用铁死亡数据库(ferroptosis database, FerrDb)获得铁死亡相关基因,使用R软件确定具有差异表达和预后价值的铁死亡相关基因,并在此基础上使用Lasso回归分析构建风险模型。通过受试者工作特征曲线(receiver operator characteristic curve, ROC)评估模型对预后的准确性,使用单因素和多因素分析筛选独立预后因素。应用功能富集和单样本基因富集分析(single-sample gene set enrichment analysis, ssGSEA)探索潜在机制。结果最终由18个基因构建了预后模型,并将OC患者分为高风险和低风险组。与低风险组相比,高风险组OC患者的总生存期(overall survival, OS)显著。时间依赖ROC曲线显示第1,2,3年的曲线下面积(area under curve, AUC)分别为0.664,0.702和0.675,说明风险模型较为可靠。风险评分被证明是OS的独立预测因子(HR= 4.092, 95%CI:2.862 ~ 5.852,P< 0.001)。功能分析显示,差异可能与受体和配体的相互作用、细胞因子和细胞因子受体的相互作用有关。抗原呈递过程包括活化的树突状细胞(activate dendritic cells, aDCs)、浆细胞样树突状细胞(plasmacytoid dendritic cells, pDCs)、抗原呈递细胞(antigen presenting cells, APC)共抑制、主要组织相容性复合体(major histocompatibility complex, MHC) I类评分和人白细胞抗原(human leukocyte antigen, HLA),差异均具有统计学意义(调整后P< 0.05)。结论FRGs影响OC患者的总体生存率,为预测OC的预后及探索新的治疗方式提供了新的方向,但FRGs与肿瘤免疫之间的潜在机制仍值得进一步研究。
陈治宇, 徐晗, 于德新. 基于生物信息学预测影响卵巢癌患者总体生存率的铁死亡相关基因[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(11): 819-825.
Zhiyu CHEN, Han XU, Dexin YU. Prediction of ferroptosis-related genes affecting overall survival in ovarian cancer patients based on bioinformatics[J]. Journal of Shandong First Medical Unversity & Shandong Academy of Medical Sciences, 2023, 44(11): 819-825.
基因 | HR | 95%CI | P |
---|---|---|---|
SELENOS | 0.724 | 0.570 ~ 0.920 | 0.008 |
SLC7A11 | 0.757 | 0.630 ~ 0.910 | 0.003 |
GPT2 | 0.825 | 0.687 ~ 0.990 | 0.039 |
LURAP1L | 0.824 | 0.702 ~ 0.967 | 0.017 |
ATP6V1G2 | 0.751 | 0.590 ~ 0.955 | 0.020 |
ARRDC3 | 1.215 | 1.015 ~ 1.453 | 0.034 |
STEAP3 | 1.158 | 1.013 ~ 1.324 | 0.031 |
ALOX12 | 1.475 | 1.139 ~ 1.910 | 0.003 |
RB1 | 1.271 | 1.055 ~ 1.531 | 0.012 |
OTUB1 | 0.700 | 0.508 ~ 0.965 | 0.029 |
PRDX6 | 0.713 | 0.528 ~ 0.961 | 0.027 |
ZFP36 | 1.118 | 1.010 ~ 1.237 | 0.031 |
CHMP5 | 0.805 | 0.651 ~ 0.996 | 0.046 |
GCH1 | 0.749 | 0.604 ~ 0.930 | 0.009 |
DUOX1 | 1.260 | 1.061 ~ 1.497 | 0.008 |
LPCAT3 | 1.304 | 1.054 ~ 1.613 | 0.014 |
EGFR | 1.207 | 1.008 ~ 1.444 | 0.040 |
IFNG | 0.565 | 0.324 ~ 0.985 | 0.044 |
ANO6 | 1.294 | 1.021 ~ 1.640 | 0.033 |
DNAJB6 | 0.728 | 0.546 ~ 0.971 | 0.031 |
表1基因表达与总生存期之间单变量Cox回归分析
基因 | HR | 95%CI | P |
---|---|---|---|
SELENOS | 0.724 | 0.570 ~ 0.920 | 0.008 |
SLC7A11 | 0.757 | 0.630 ~ 0.910 | 0.003 |
GPT2 | 0.825 | 0.687 ~ 0.990 | 0.039 |
LURAP1L | 0.824 | 0.702 ~ 0.967 | 0.017 |
ATP6V1G2 | 0.751 | 0.590 ~ 0.955 | 0.020 |
ARRDC3 | 1.215 | 1.015 ~ 1.453 | 0.034 |
STEAP3 | 1.158 | 1.013 ~ 1.324 | 0.031 |
ALOX12 | 1.475 | 1.139 ~ 1.910 | 0.003 |
RB1 | 1.271 | 1.055 ~ 1.531 | 0.012 |
OTUB1 | 0.700 | 0.508 ~ 0.965 | 0.029 |
PRDX6 | 0.713 | 0.528 ~ 0.961 | 0.027 |
ZFP36 | 1.118 | 1.010 ~ 1.237 | 0.031 |
CHMP5 | 0.805 | 0.651 ~ 0.996 | 0.046 |
GCH1 | 0.749 | 0.604 ~ 0.930 | 0.009 |
DUOX1 | 1.260 | 1.061 ~ 1.497 | 0.008 |
LPCAT3 | 1.304 | 1.054 ~ 1.613 | 0.014 |
EGFR | 1.207 | 1.008 ~ 1.444 | 0.040 |
IFNG | 0.565 | 0.324 ~ 0.985 | 0.044 |
ANO6 | 1.294 | 1.021 ~ 1.640 | 0.033 |
DNAJB6 | 0.728 | 0.546 ~ 0.971 | 0.031 |
指标 | 单变量Cox回归 | 多变量Cox回归 | ||||
---|---|---|---|---|---|---|
HR | 95% CI | P | HR | 95% CI | P | |
年龄 | 1.437 | 1.093 ~ 1.888 | 0.009 | 1.395 | 1.062 ~ 1.833 | 0.017 |
肿瘤分级 | 1.202 | 0.802 ~ 1.800 | 0.373 | |||
风险评分 | 4.101 | 2.875 ~ 5.850 | < 0.001 | 4.092 | 2.862 ~ 5.852 | < 0.001 |
表2总生存期的单变量和多变量Cox回归分析
指标 | 单变量Cox回归 | 多变量Cox回归 | ||||
---|---|---|---|---|---|---|
HR | 95% CI | P | HR | 95% CI | P | |
年龄 | 1.437 | 1.093 ~ 1.888 | 0.009 | 1.395 | 1.062 ~ 1.833 | 0.017 |
肿瘤分级 | 1.202 | 0.802 ~ 1.800 | 0.373 | |||
风险评分 | 4.101 | 2.875 ~ 5.850 | < 0.001 | 4.092 | 2.862 ~ 5.852 | < 0.001 |
1 | Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin,2021,71(3): 209. |
2 | Park HK, Ruterbusch JJ, Cote ML. Recent trends in ovarian cancer incidence and relative survival in the United States by race/ethnicity and histologic subtypes[J].Cancer Epidemiol Biomarkers Prev,2017,26(10): 1511. |
3 | Vergote I, González-Martín A, Ray-Coquard I, et al. European experts consensus: BRCA/homologous recombination deficiency testing in first-line ovarian cancer[J].Ann Oncol,2022,33(3): 276. |
4 | Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J].Cell,2012,149(5): 1060. |
5 | Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease[J].Cell,2017,171(2): 273. |
6 | Hassannia B, Vandenabeele P, Vanden Berghe T. Targeting ferroptosis to iron out cancer[J].Cancer Cell,2019,35(6): 830. |
7 | Liang C, Zhang X, Yang M, et al. Recent progress in ferroptosis inducers for cancer therapy[J].Adv Mater,2019,31(51): e1904197. |
8 | Rooney MS, Shukla SA, Wu CJ, et al. Molecular and genetic properties of tumors associated with local immune cytolytic activity[J].Cell,2015,160(1/2): 48. |
9 | Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin,2018,68(6): 394. |
10 | Ye Y, Dai Q, Li S, et al. A novel defined risk signature of the ferroptosis-related genes for predicting the prognosis of ovarian cancer[J].Front Mol Biosci,2021,8: 645845. |
11 | Chan DW, Yung MM, Chan YS, et al. MAP30 protein fromMomordica charantiais therapeutic and has synergic activity with cisplatin against ovarian cancerin vivoby altering metabolism and inducing ferroptosis[J].Pharmacol Res,2020,161: 105157. |
12 | Worley BL, Kim YS, Mardini J, et al. GPx3 supports ovarian cancer progression by manipulating the extracellular redox environment[J].Redox Biol,2019,25: 101051. |
13 | Huang Y, Huang J, Huang Y, et al. TFRC promotes epithelial ovarian cancer cell proliferation and metastasis via up-regulation of AXIN2 expression[J].Am J Cancer Res,2020,10(1): 131. |
14 | Bayır H, Anthonymuthu TS, Tyurina YY, et al. Achieving life through death: redox biology of lipid peroxidation in ferroptosis[J].Cell Chem Biol,2020,27(4): 387. |
15 | Goji T, Takahara K, Negishi M, et al. Cystine uptake through the cystine/glutamate antiporter xCT triggers glioblastoma cell death under glucose deprivation[J].J Biol Chem,2017,292(48): 19721. |
16 | Itkonen HM, Gorad SS, Duveau DY, et al. Inhibition of O-GlcNAc transferase activity reprograms prostate cancer cell metabolism[J].Oncotarget,2016,7(11): 12464. |
17 | Huang F, Zheng Y, Li X, et al. Ferroptosis-related gene AKR1C1 predicts the prognosis of non-small cell lung cancer[J].Cancer Cell Int,2021,21(1): 567. |
18 | Dixon SJ, Patel DN, Welsch M, et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis[J].Elife,2014,3: e02523. |
19 | Chen Y, Tian D, Chen X, et al. ARRDC3 as a diagnostic and prognostic biomarker for epithelial ovarian cancer based on data mining[J].Int J Gen Med,2021,14: 967. |
20 | Xiao J, Shi Q, Li W, et al. ARRDC1 and ARRDC3 act as tumor suppressors in renal cell carcinoma by facilitating YAP1 degradation[J].Am J Cancer Res,2018,8(1): 132. |
21 | Takeuchi F, Kukimoto I, Li Z, et al. Genome-wide association study of cervical cancer suggests a role for ARRDC3 gene in human papillomavirus infection[J].Hum Mol Genet,2019,28(2): 341. |
22 | Yan Y, Liang Q, Xu Z, et al. Downregulated ferroptosis-related gene STEAP3 as a novel diagnostic and prognostic target for hepatocellular carcinoma and its roles in immune regulation[J].Front Cell Dev Biol,2021,9: 743046. |
23 | Bebber CM, Thomas ES, Stroh J, et al. Ferroptosis response segregates small cell lung cancer (SCLC) neuroendocrine subtypes[J].Nat Commun,2021,12(1): 2048. |
24 | Liu T, Jiang L, Tavana O, et al. The deubiquitylase OTUB1 mediates ferroptosis via stabilization of SLC7A11[J].Cancer Res,2019,79(8): 1913. |
25 | Lu B, Chen XB, Hong YC, et al. Identification of PRDX6 as a regulator of ferroptosis[J].Acta Pharmacol Sin,2019,40(10): 1334. |
26 | Zhang Z, Guo M, Li Y, et al. RNA-binding protein ZFP36/TTP protects against ferroptosis by regulating autophagy signaling pathway in hepatic stellate cells[J].Autophagy,2020,16(8): 1482. |
27 | Dai E, Meng L, Kang R, et al. ESCRT-Ⅲ-dependent membrane repair blocks ferroptosis[J].Biochem Biophys Res Commun,2020,522(2): 415. |
28 | Kraft VAN, Bezjian CT, Pfeiffer S, et al. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling[J].ACS Cent Sci,2020,6(1): 41. |
29 | Wang H, Cheng Q, Chang K, et al. Integrated analysis of ferroptosis-related biomarker signatures to improve the diagnosis and prognosis prediction of ovarian cancer[J].Front Cell Dev Biol,2021,9: 807862. |
30 | Yu Z, He H, Chen Y, et al. A novel ferroptosis related gene signature is associated with prognosis in patients with ovarian serous cystadenocarcinoma[J].Sci Rep,2021,11(1): 11486. |
31 | Xing C, Yin H, Yao ZY, et al. Prognostic signatures based on ferroptosis- and immune-related genes for cervical squamous cell carcinoma and endocervical adenocarcinoma[J].Front Oncol,2022,11: 774558. |
32 | Han L, Bai L, Qu C, et al. PPARG-mediated ferroptosis in dendritic cells limits antitumor immunity[J].Biochem Biophys Res Commun,2021,576: 33. |
33 | Ousingsawat J, Schreiber R, Kunzelmann K. TMEM16F/anoctamin 6 in ferroptotic cell death[J].Cancers (Basel),2019,11(5): 625. |
[1] | 戚孟琪, 吕玉芹, 高蕾, 张敬军.基于生物信息学方法探究布瓦西坦抗癫痫机制[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(6): 401-407. |
[2] | 陈玥, 佘婧瑶, 陈思, 曹莹, 梁春云, 卢燕, 王佩娟, 公真.E2F转录因子家族在宫颈癌中的表达及其与临床预后的关系[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(3): 215-223. |
[3] | 于航, 管睿, 柴杰.铁死亡发生机制及其与胃癌发病的关系研究进展[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(12): 955-960. |
[4] | 黄永胜, 黄彩娜, 董学岭, 卓秀丽, 房娟娟, 宋文霞, 张雨露, 阎磊, 陈刚, 吕仁广.膀胱尿路上皮癌蛋白组学相关个体化预后特征的推导与验证[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(1): 15-23. |
[5] | 徐雯, 吕玉芹, 高蕾, 张敬军.基于多组学数据研究奥卡西平抗痫机制[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(5): 327-334. |
[6] | 王舒钧, 田秀青.铁死亡抑制蛋白1:心肌再灌注损伤的潜在治疗靶点[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(2): 138-141. |
[7] | 卜文超, 曾宪智, 关云茜, 谢思源, 陈世新, 汤挺兵, 曹明国.SOCS基因家族在肝细胞癌中的表达及生物信息学分析[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(10): 740-747. |
[8] | 吕玉芹, 高蕾, 徐雯, 戚孟琪, 张敬军.颞叶癫痫差异发作频率相关生物通路及蛋白-蛋白相互作用网络分析[J]. betway必威登陆网址 (betway.com )学报, 2021, 42(7): 508-515. |
[9] | 牛盼红, 王岩, 刘营营, 张洁, 张书平, 刘思金.铁基磁性纳米载体在肿瘤治疗中的应用[J]. betway必威登陆网址 (betway.com )学报, 2021, 42(5): 333-339. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||