betway必威登陆网址 (betway.com )学报››2021,Vol. 42››Issue (5): 333-339.DOI:10.3969/j.issn.2097-0005.2021.05.003
牛盼红1, 王岩1, 刘营营1, 张洁1, 张书平1,2, 刘思金3
收稿日期:
2021-03-15出版日期:
2021-05-25发布日期:
2021-08-31通讯作者:
张书平,E-mail:spzhang@sdfmu.edu.cn。作者简介:
牛盼红,副教授,博士,研究方向:铁死亡驱动纳米治疗和炎症疾病靶向治疗。刘思金,中国科学院遗传与发育生物学研究所博士,美国麻省理工学院和美国哈佛大学医学院附属儿童医院博士后,研究员,国家杰出青年基金获得者,中科院百人计划入选者,万人计划入选者,国家973项目首席科学家。主持国家自然基金面上项目2项,中国科学院知识创新工程重要方向项目1项,中国科学院“百人计划”项目1项。研究方向:环境毒理与健康、纳米材料和颗粒物的安全性与转化毒理,已发表SCI学术论文150余篇。研究成果先后在国际著名期刊上发表,部分研究成果被Nature、Science Daily等学术期刊多次报道和评述。张书平,betway必威登陆网址 特聘教授,泰山学者青年专家。主要研究铁代谢紊乱诱导的造血障碍、癌症等疾病的发生发展以及铁死亡介导的相关分子机制,并探索相应的纳米治疗;同时关注环境污染等外界风险因素对铁代谢和疾病进程的影响。近5年共发表相关SCI论文30余篇,包括以第一或通讯作者发表在Blood、Advanced Science、eLife、ACS Nano、Journal of Hazardous Materials等权威期刊上;参与专著编撰一部;主持和参与多项国家自然科学基金、国家973等项目。基金资助:
Niu Panhong1, Wang Yan1, Liu Yingying1, Zhang Jie1, Zhang Shuping1,2, Liu Sijin3
Received:
2021-03-15Online:
2021-05-25Published:
2021-08-31摘要:纳米载药在肿瘤治疗中所取得的进展推动了纳米材料在生物医学方向的发展,其中,铁基磁性纳米材料因其良好的磁学、优异的生物兼容性以及表面易于功能化修饰等优势,作为纳米载体在肿瘤治疗中得到了广泛关注和快速发展。虽然目前对Fe3O4磁性纳米载体有了系统性的了解,但对作为纳米载体的铁基磁性纳米粒子的全面、系统认识仍有待加强。随着肿瘤纳米递药系统设计的快速发展,亟需对铁基磁性纳米载体的制备过程和作用机理进行系统性的梳理。此外,铁死亡作为一种新型细胞死亡方式,其在肿瘤等慢性疾病的发生发展过程中的作用正逐步被重视,而铁基磁性纳米粒子在肿瘤治疗应用中对铁死亡产生怎样的影响,仍有待阐明。本综述系统介绍了铁基磁性纳米载药平台的发展、种类和制备方法,并详细总结了铁基磁性纳米粒子在肿瘤诊疗一体化中的应用,包括磁场辅助靶向、磁共振成像、磁热治疗等方面,同时对其参与Fenton反应引发铁死亡的相关机理进行了阐述。
中图分类号:
牛盼红, 王岩, 刘营营, 张洁, 张书平, 刘思金. 铁基磁性纳米载体在肿瘤治疗中的应用[J]. betway必威登陆网址 (betway.com )学报, 2021, 42(5): 333-339.
Niu Panhong, Wang Yan, Liu Yingying, Zhang Jie, Zhang Shuping, Liu Sijin. Application of iron-based magnetic nanocarriers in tumor therapy[J]. Journal of Shandong First Medical Unversity & Shandong Academy of Medical Sciences, 2021, 42(5): 333-339.
[1] Kang JH, Krause S, Tobin H, et al. A combined micromagnetic-microfluidic device for rapid capture and culture of rare circulating tumor cells[J]. Lab on a Chip, 2012,12:2175. [2] Saadat M, Manshadi MKD, Mohammadi M, et al. Magnetic particle targeting for diagnosis and therapy of lung cancers[J]. Journal of Controlled Release: Official Journal of the Controlled Release Society,2020,328:776. [3] Wust P, Hildebrandt B, Sreenivasa G, et al. Hyperthermia in combined treatment of cancer[J]. The Lancet Oncology, 2002,3:487. [4] Ren X, Chen H, Yang V, et al. Iron oxide nanoparticle-based theranostics for cancer imaging and therapy[J]. Frontiers of Chemical Science and Engineering, 2014,8:253. [5] Zhao S, Yu X, Qian Y, et al. Multifunctional magnetic iron oxide nanoparticles: an advanced platform for cancer theranostics[J]. Theranostics, 2020,10:6278. [6] Shan X, Li S, Sun B, et al. Ferroptosis-driven nanotherapeutics for cancer treatment[J]. Journal of Controlled Release: Official Journal of the Controlled Release Society,2020,319:322. [7] Qiu Y, Cao Y, Cao W, et al. The application of ferroptosis in diseases[J]. Pharmacological Research, 2020,159:104919. [8] Krukemeyer MGKV, Huebner F, Wagner W, et al. History and possible uses of nanomedicine based on nanoparticles and nanotechnological progress[J]. Journal of Nanomedicine and Nanotechnology, 2015,6:1000336. [9] Zhou J, Xue C, Hou Y, et al. Oxygenated theranostic nanoplatforms with intracellular agglomeration behavior for improving the treatment efficacy of hypoxic tumors[J]. Biomaterials, 2019,197:129. [10] Cai AY, Zhu YJ, Qi C. Biodegradable inorganic nanostructured biomaterials for drug delivery[J]. Advanced Materials Interfaces, 2020,7:2000819. [11] Bertran O, Revilla-Lopez G, Casanovas J, et al. Dissolving hydroxyolite: A DNA molecule into its hydroxyapatite mold[J]. Chemistry-A European Journal, 2016,22:6631. [12] Wang L, Nancollas GH. Calcium orthophosphates: crystallization and dissolution[J]. Chemical Reviews,2008,108:4628. [13] Qi C, Huang JJ, Chen F, et al. Synthesis, characterization and applications of calcium carbonate/fructose 1,6-bisphosphate composite nanospheres and carbonated hydroxyapatite porous nanospheres[J]. Journal of Materials Chemistry B,2014,2:8378. [14] Qi C, Zhu YJ, Lu BQ, et al. ATP-stabilized amorphous calcium carbonate nanospheres and their application in protein adsorption[J]. Small, 2014,10:2047. [15] Wei J, Cheang T, Tang B, et al. The inhibition of human bladder cancer growth by calcium carbonate/CaIP6 nanocomposite particles delivering AIB1 siRNA[J]. Biomaterials,2013,34:1246. [16] He XY, Liu BY, Xu C, et al. A multi-functional macrophage and tumor targeting gene delivery system for the regulation of macrophage polarity and reversal of cancer immunoresistance[J]. Nanoscale, 2018,10:15578. [17] Abasian P, Ghanavati S, Rahebi S, et al. Polymeric nanocarriers in targeted drug delivery systems: A review[J]. Polymers for Advanced Technologies,2020,31:2939. [18] Dehghani A, Bahlakeh G, Ramezanzadeh B. Synthesis of a non-hazardous/smart anti-corrosion nano-carrier based on beta-cyclodextrin-zinc acetylacetonate inclusion complex decorated graphene oxide (beta-CD-ZnA-MGO) [J]. Journal of Hazardous Materials,2020,398:122962. [19] Deng ZY, Liu SY. Controlled drug delivery with nanoassemblies of redox-responsive prodrug and polyprodrug amphiphiles[J]. Journal of Controlled Release,2020,326:276. [20] Chu BY, Qu Y, He XL, et al. ROS-responsive camptothecin prodrug nanoparticles for on-demand drug release and combination of chemotherapy and photodynamic therapy[J]. Adv Sci (Weinh), 2020,7(20):2001853. [21] Li MQ, Zhao GK, Su WK, et al. Enzyme-responsive nanoparticles for anti-tumor drug delivery[J]. Front Chem,2020,8:647. [22] Maruyama K. Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects[J]. Advanced Drug Delivery Reviews, 2011,63:161. [23] Au JLS, Yeung BZ, Wientjes MG, et al. Delivery of cancer therapeutics to extracellular and intracellular targets: Determinants, barriers, challenges and opportunities[J]. Adv Drug Deliv Rev,2016,97:280. [24] Guo XM, Li W, Luo LH, et al. External magnetic field-enchanced chemo-phoyothermal combination tumor therapy via iron oxide nanoparticles[J]. ACS Appl Mater Interfaces, 2017,9(19):16581. [25] Kostevsek N, Cheung CCL, Sersa I, et al. Magneto-liposomes as MRI contrast agents: A systematic study of different liposomal formulations[J]. Nanomaterials (Basel), 2020,10(5):889. [26] Song Q, Zhang Z. Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals[J]. J Am Chem Soc, 2004,126:6164. [27] Hycen T, Lee S, Park J, et al. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process[J]. J Am Chem Soc, 2001,123:12798. [28] Li Z, Sun Q, Gao M. Preparation of water-soluble magnetite nanocrystals from hydrated ferric salts in 2-pyrrolidone: Mechanism leading to Fe3O4[J]. Angew Chem Int Ed, 2005,44:123. [29] Woo K, Lee HJ, Ahn J, et al. Sol-gel mediated synthesis of Fe2O3nanorods[J]. Adv Mater, 2003,15:1761. [30] Sun S, Zeng H, Robinson DB, et al. Monodisperse MFe2O4(M=Fe, Co, Mn) nanoparticles[J]. Journal of the American Chemical Society, 2004,126:273. [31] Sugimoto T, Itoh H, Mochida T. Shape control of monodisperse hematite particles by organic additives in the gel-sol system[J]. J Colloid Interface Sci, 1998,205(1):42. [32] Han LH, Liu H, Wei Y. In situ synthesis of hematite nanoparticles using a low-temperature microemulsion method[J]. Powder Technology, 2011,207:42. [33] Lian JB, Duan XC, Ma JM. Hematite (α-Fe2O3) with various morphologies: ionic liquid-assisted synthesis, formation mechanism, and properties[J]. ACS Nano, 2009,3:3749. [34] Sharma R, Thakur P, Sharma P, et al. Ferrimagnetic Ni2+doped Mg-Zn spinel ferrite nanoparticles for high density information storage[J]. Journal of Alloys and Compounds, 2017,704: 7. [35] Zhang L, Liu Z, Liu Y, et al. Ultrathin surface coated water-soluble cobalt ferrite nanoparticles with high magnetic heating efficiency and rapid in vivo clearance[J]. Biomaterials, 2020,230:119655. [36] Haribabu V, Sharmiladevi P, Akhtar N, et al. Label free ultrasmall fluoromagnetic ferrite-clusters for targeted cancer imaging and drug delivery[J]. Curr Drug Deliv, 2019,16(3):233. [37] Liu X, Qi X, Zhang L. 3D hierarchical magnetic hollow sphere-like CuFe2O4combined with HPLC for the simultaneous determination of Sudan I-IV dyes in preserved bean curd[J]. Food Chemistry, 2018,241:268. [38] Sang M, Luo R, Bai Y, et al. BHQ-cyanine-based "off-on" long-circulating assembly as a ferroptosis amplifier for cancer treatment: A lipid-peroxidation burst device[J]. ACS Applied Materials & Interfaces, 2019,11:42873. [39] Flanagan SW, Moseley PL, Buettner GR. Increased flux of free radicals in cells subjected to hyperthermia: detection by electron paramagnetic resonance spin trapping[J]. FEBS Lett, 1998,431:285. [40] Ludwig RTF, Teichgraeber U, Hilger I. Nanoparticle-based hyperthermia distinctly impacts production of ROS, expression of Ki67, TOP2A, and TPX2, and induction of apoptosis in pancreatic cancer[J]. Int J Nanomedicine, 2017, 12:1009. [41] Wang SH, Luo J, Zhang ZH, et al. Iron and magnetic: new research direction of the ferroptosis-based cancer therapy[J]. American Journal of Cancer Research, 2018,8:1933. [42] Yue L, Wang J, Dai Z, et al. pH-responsive, self-sacrificial nanotheranostic agent for potential in vivo and in vitro dual modal MRI/CT imaging, real-time, and in situ monitoring of cancer therapy[J]. Bioconjugate Chemistry, 2017,28:400. [43] Liu YM, Yang K, Cheng L, et al. PEGylated FePt@Fe2O3core-shell magnetic nanoparticles: Potential theranostic applications and in vivo toxicity studies[J]. Nanomedicine-Nanotechnology Biology and Medicine, 2013,9:1077. [44] Chou SW, Shau YH, Wu PC, et al. In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging[J]. Journal of the American Chemical Society, 2010,132:13270. [45] Chen S, Wang LJ, Duce SL, et al. Engineered biocompatible nanoparticles for in vivo imaging applications[J]. Journal of the American Chemical Society, 2010,132:15022. [46] Gilchrist RK, Medal R, Shorey WD, et al. Selective inductive heating of lymph nodes[J]. Annals of Surgery, 1957, 146(4):596. [47] Kobayashi T, Kida Y, Tanaka T, et al. Interstitial hyperthermia of malignant brain tumors by implant heating system: Clinical experience[J]. J Neuro Oncol, 1991,10:153. [48] Deger S, Boehmer D, Türk I, et al. Interstitial hyperthermia using self-regulating thermoseeds combined with conformal radiation therapy[J]. Eur Urol, 2002,42:147. [49] Akiyama SKS, Kodera Y. A new method of thermo-chemotherapy using a stent for patients with esophageal cancer[J]. Surg Today, 2006, 36(1): 19. [50] Johannsen MGU, Taymoorian K. Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial[J]. Int J Hyperthermia, 2007,23:315. [51] Wust P, Hildebrandt B, Sreenivasa G,et al. Hyperthermia in combined treatment of cancer[J]. Lancet Oncol, 2002,3:487. [52] Xiang Z, Qi Y, Lu Y, et al. MOF-derived novel porous Fe3O4@C nanocomposites as smart nanomedical platforms for combined cancer therapy: magnetic-triggered synergistic hyperthermia and chemotherapy[J]. Journal of Materials Chemistry B, 2020,8:8671. [53] Wang C, Zhao N, Huang Y, et al. Coordination of injectable self-healing hydrogel with Mn-Zn ferrite@mesoporous silica nanospheres for tumor MR imaging and efficient synergistic magnetothermal-chemo-chemodynamic therapy[J]. Chemical Engineering Journal, 2020,401:126100. [54] Du ZZ, Sun Y, Liu J, et al. Design of a temperature measurement and feedback control system based on an improved magnetic nanoparticle thermometer[J]. Measurement Science and Technology, 2018,29(4):5003. [55] Zhang W, Zuo XD, Niu Y, et al. Novel nanoparticles with Cr3+substituted ferrite for self-regulating temperature hyperthermia[J]. Nanoscale, 2017,9:13929. [56] McNerny KL, Kim Y, Laughlin DE, et al. Chemical synthesis of monodisperse gamma-Fe-Ni magnetic nanoparticles with tunable curie temperatures for self-regulated hyperthermia[J]. Journal of Applied Physics, 2010,7(9pt.2):S2951. [57] Yao AH, Ai FR, Wang DP, et al. Synthesis, characterization and in vitro cytotoxicity of self-regulating magnetic implant material for hyperthermia application[J]. Materials Science & Engineering C-Materials for Biological Applications, 2009,29:2525. [58] Li WP, Su CH, Chang YC, et al. Ultrasound-induced reactive oxygen species mediated therapy and imaging using a fenton reaction activable polymersome[J]. ACS Nano, 2016,10:2017. [59] Huo MF, Wang LY, Chen Y, et al. Tumor-selective catalytic nanomedicine by nanocatalyst delivery[J]. Nat Commun,2017,8(1):357. [60] Shen ZY, Liu T, Li Y, et al. Fenton-reaction-acceleratable magnetic nanoparticles for ferroptosis therapy of orthotopic brain tumors[J]. ACS Nano, 2018,12:11355. |
[1] | 李瑞娟, 孟艳红.超声造影联合O‐RADS在卵巢肿瘤诊断中的研究进展[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(9): 712-715. |
[2] | 张欢欢, 张蕾, 崔洁, 梁尹攀, 伊淑莹.肿瘤免疫中Wnt/β‑catenin信号通路的研究进展[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(9): 716-720. |
[3] | 王伟浩, 马莹, 李胜.循环肿瘤细胞形态诊断参数测量方法的研究进展[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(8): 561-564. |
[4] | 张露, 赵乐乐, 解思凯, 李海鹏, 王俊杰, 李正红.嵌合抗原受体T细胞治疗女性高发恶性肿瘤的研究进展和挑战[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(8): 608-612. |
[5] | 韩明帅, 武英欣, 金讯波.循环肿瘤细胞在前列腺癌中的应用[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(8): 613-617. |
[6] | 李彬, 冯锋, 刘富垒.肿瘤切除手术诱发术后复发的机制及纠正策略研究进展[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(7): 535-540. |
[7] | 褚微, 张冰, 纪洪.HMGCS2在疾病中的研究进展[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(7): 546-551. |
[8] | 司贵米, 山长平.外泌体非编码RNA在三阴性乳腺癌中的研究进展[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(6): 461-465. |
[9] | 彭燕玲, 宋文刚, 刘春燕.PDCD5在消化系统肿瘤中的研究进展[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(4): 300-303. |
[10] | 武英欣, 韩明帅, 张俊勇.3D技术在结直肠肿瘤诊疗中的应用[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(3): 237-240. |
[11] | 刘桐, 王西冉, 孙振, 于成龙, 张明宾.颏下岛状瓣修复口腔恶性肿瘤术后缺损的临床分析[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(1): 53-55. |
[12] | 李秀凤, 刘德美, 韩凯, 李云婷, 张云香.子宫内膜中肾腺癌1例及文献复习[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(1): 56-58. |
[13] | 于宗菲, 翁丽涵, 孙诚诚, 曹晓钰, 叶振.CRISPR/Cas9系统技术难关:脱靶效应及其优化方法[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(1): 74-80. |
[14] | 徐心悦, 景秀丽, 唐华.Ⅱ型固有淋巴细胞的研究进展[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(9): 666-673. |
[15] | 王迪, 吴霜, 王倩, 杨静, 孟英涛.耳穴压豆改善恶性肿瘤伴失眠患者睡眠效果的Meta分析[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(7): 493-500. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||