betway必威登陆网址 (betway.com )学报››2023,Vol. 44››Issue (1): 74-80.DOI:10.3969/j.issn.2097-0005.2023.01.014
• 综述 •上一篇
于宗菲1,2(), 翁丽涵1, 孙诚诚1, 曹晓钰1, 叶振1,2(
)
收稿日期:
2022-08-10出版日期:
2023-01-25发布日期:
2023-03-31通讯作者:
叶振作者简介:
于宗菲,本科在读;E-mail:yuzongfei2000@163.com。基金资助:
Zong-fei YU1,2(), Li-han WENG1, Cheng-cheng SUN1, Xiao-yu CAO1, Zhen YE1,2(
)
Received:
2022-08-10Online:
2023-01-25Published:
2023-03-31Contact:
Zhen YE摘要:
近年来,基因编辑新技术CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/associated nuclease 9)颇受关注,可用于在体内或体外编辑多种细胞中的单个或多个基因,为基因功能研究提供了新思路。Cas9核酸酶可以通过改变其引导的单一向导RNA(single-guideRNA,sgRNA)序列,结合到新的特定基因序列进行靶向编辑。研究发现,CRISPR/Cas9系统存在的脱靶风险已成为该技术实际应用过程中的一个挑战。本文对CRISPR/Cas9系统作用机制、肿瘤临床应用进行简要综述,重点关注该系统存在的脱靶效应,并总结归纳减少或避免脱靶的方法,以期为相关领域研究提供参考。
于宗菲, 翁丽涵, 孙诚诚, 曹晓钰, 叶振. CRISPR/Cas9系统技术难关:脱靶效应及其优化方法[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(1): 74-80.
Zong-fei YU, Li-han WENG, Cheng-cheng SUN, Xiao-yu CAO, Zhen YE. Technical difficulties of the CRISPR/Cas9 System: off-target effects and its optimization methods[J]. Journal of Shandong First Medical Unversity & Shandong Academy of Medical Sciences, 2023, 44(1): 74-80.
1 | 林锦莹, 赵兰, 欧阳松应. CRISPR/Cas9: 基因编辑的新时代[J]. 中国细胞生物学学报, 2021, 43(3): 647. |
2 | Russel J, Pinilla-Redondo R, Mayo-Muñoz D, et al. CRISPRCasTyper: automated identification, annotation, and classification of CRISPR-Cas loci[J]. CRISPR J, 2020, 3(6): 462. |
3 | Shojaei Baghini S, Gardanova ZR, Abadi SAH, et al. CRISPR/Cas9 application in cancer therapy: a pioneering genome editing tool[J]. Cell Mol Biol Lett, 2022, 27(1): 35. |
4 | 潘少伟, 张华莉. CRISPR-Cas9系统的发现[J]. 中南大学学报(医学版), 2021, 46(12): 1392. |
5 | Ebrahimi V, Hashemi A. Challenges ofin vitrogenome editing with CRISPR/Cas9 and possible solutions: a review[J]. Gene, 2020, 753: 144813. |
6 | Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives[J]. Mol Cell, 2010, 40(2): 179. |
7 | Ciampricotti M, Karakousi T, Richards AL, et al. Rlf-Mycl gene fusion drives tumorigenesis and metastasis in a mouse model of small cell lung cancer[J]. Cancer Discov, 2021, 11(12): 3214. |
8 | Lu Y, Xue J, Deng T, et al. Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer[J]. Nat Med, 2020, 26(5): 732. |
9 | Dong MB, Wang G, Chow RD, et al. Systematic immunotherapy target discovery using genome-scalein vivoCRISPR screens in CD8 T cells[J]. Cell, 2019, 178(5): 1189. |
10 | Kim MY, Yu KR, Kenderian SS, et al. Genetic inactivation of CD33 in hematopoietic stem cells to enable CAR T cell immunotherapy for acute myeloid leukemia[J]. Cell, 2018, 173(6): 1439. |
11 | Wang X, Tokheim C, Gu SS, et al.In vivoCRISPR screens identify the E3 ligase Cop1 as a modulator of macrophage infiltration and cancer immunotherapy target[J]. Cell, 2021, 184(21): 5357. |
12 | Cohen YC, Zada M, Wang SY, et al. Identification of resistance pathways and therapeutic targets in relapsed multiple myeloma patients through single-cell sequencing[J]. Nat Med, 2021, 27(3): 491. |
13 | Lin Y, Cradick TJ, Brown MT, et al. CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences[J]. Nucleic Acids Res, 2014, 42(11): 7473. |
14 | Yin J, Liu M, Liu Y, et al. Optimizing genome editing strategy by primer-extension-mediated sequencing[J]. Cell Discov, 2019, 5: 18. |
15 | Manghwar H, Li B, Ding X, et al. CRISPR/Cas systems in genome editing: methodologies and tools for sgRNA design, off-target evaluation, and strategies to mitigate off-target effects[J]. Adv Sci (Weinh), 2020, 7(6): 1902312. |
16 | Hsu PD, Scott DA, Weinstein JA, et al. DNA targeting specificity of RNA-guided Cas9 nucleases[J]. Nat Biotechnol, 2013, 31(9): 827. |
17 | 毕博, 张宇, 赵慧. 酵母杂交系统在CRISPR/Cas9基因编辑系统脱靶率研究中的应用[J]. 中国生物工程杂志, 2021, 41(6): 27. |
18 | Kim D, Kim DE, Lee G, et al. Genome-wide target specificity of CRISPR RNA-guided adenine base editors[J]. Nat Biotechnol, 2019, 37(4): 430. |
19 | Chatterjee P, Jakimo N, Lee J, et al. An engineered ScCas9 with broad PAM range and high specificity and activity[J]. Nat Biotechnol, 2020, 38(10): 1154. |
20 | Hu JH, Miller SM, Geurts MH, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity[J]. Nature, 2018, 556(7699): 57. |
21 | Ran FA, Cong L, Yan WX, et al.In vivogenome editing usingStaphylococcus aureusCas9[J]. Nature, 2015, 520(7546): 186. |
22 | O’Geen H, Henry IM, Bhakta MS, et al. A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture[J]. Nucleic Acids Res, 2015, 43(6): 3389. |
23 | 郭全娟, 韩秋菊, 张建. CRISPR/Cas9技术的脱靶效应及优化策略[J]. 生物化学与生物物理进展, 2018, 45(8): 798. |
24 | 陈燕, 刘芷兮, 肖洪涛. CRISPR-Cas9基因编辑技术用于肿瘤细胞模型的研究进展[J]. 肿瘤预防与治疗, 2020, 33(6): 542. |
25 | Pattanayak V, Lin S, Guilinger JP, et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity[J]. Nat Biotechnol, 2013, 31(9): 839. |
26 | Wu X, Kriz AJ, Sharp PA. Target specificity of the CRISPR-Cas9 system[J]. Quant Biol, 2014, 2(2): 59. |
27 | Zhang C, Lu T, Zhang Y, et al. Rapid generation of maternal mutants via oocyte transgenic expression of CRISPR-Cas9 and sgRNAs in zebrafish[J]. Sci Adv, 2021, 7(32): eabg4243. |
28 | Fu Y, Foden JA, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells[J]. Nat Biotechnol, 2013, 31(9): 822. |
29 | Ren X, Yang Z, Xu J, et al. Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters inDrosophila[J]. Cell Rep, 2014, 9(3): 1151. |
30 | Kocak DD, Josephs EA, Bhandarkar V, et al. Increasing the specificity of CRISPR systems with engineered RNA secondary structures[J]. Nat Biotechnol, 2019, 37(6): 657. |
31 | Rose JC, Popp NA, Richardson CD, et al. Suppression of unwanted CRISPR-Cas9 editing by co-administration of catalytically inactivating truncated guide RNAs[J]. Nat Commun, 2020, 11(1): 2697. |
32 | Labuhn M, Adams FF, Ng M, et al. Refined sgRNA efficacy prediction improves large- and small-scale CRISPR-Cas9 applications[J]. Nucleic Acids Res, 2018, 46(3): 1375. |
33 | Doench JG, Fusi N, Sullender M, et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9[J]. Nat Biotechnol, 2016, 34(2): 184. |
34 | Fu Y, Sander JD, Reyon D, et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs[J]. Nat Biotechnol, 2014, 32(3): 279. |
35 | Xu K, Zhang X, Liu Z, et al. A transgene-free method for rapid and efficient generation of precisely edited pigs without monoclonal selection[J]. Sci China Life Sci, 2022, 65(8): 1535. |
36 | Tao R, Wang Y, Jiao Y, et al. Bi-PE: bi-directional priming improves CRISPR/Cas9 prime editing in mammalian cells[J]. Nucleic Acids Res, 2022, 50(11): 6423. |
37 | Frock RL, Hu J, Meyers RM, et al. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases[J]. Nat Biotechnol, 2015, 33(2): 179. |
38 | Wang C, Qu Y, Cheng JKW, et al. dCas9-based gene editing for cleavage-free genomic knock-in of long sequences[J]. Nat Cell Biol, 2022, 24(2): 268. |
39 | Saifaldeen M, Al-Ansari DE, Ramotar D, et al. CRISPR FokI dead Cas9 system: principles and applications in genome engineering[J]. Cells, 2020, 9(11): 2518. |
40 | 尹珅, 贺桂芳, 赖方秾, 等. CRISPR/Cas9系统的脱靶效应[J]. 生物技术通报, 2016, 32(3): 31. |
41 | Kleinstiver BP, Prew MS, Tsai SQ, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities[J]. Nature, 2015, 523(7561): 481. |
42 | Hu JH, Miller SM, Geurts MH, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity[J]. Nature, 2018, 556(7699): 57. |
43 | Casini A, Olivieri M, Petris G, et al. A highly specific SpCas9 variant is identified byin vivoscreening in yeast[J]. Nat Biotechnol, 2018, 36(3): 265. |
44 | Tan Y, Chu AHY, Bao S, et al. Rationally engineeredStaphylococcus aureusCas9 nucleases with high genome-wide specificity[J]. Proc Natl Acad Sci U S A, 2019, 116(42): 20969. |
45 | Xie H, Ge X, Yang F, et al. High-fidelity SaCas9 identified by directional screening in human cells[J]. PLoS Biol, 2020, 18(7): e3000747. |
46 | Slaymaker IM, Gao L, Zetsche B, et al. Rationally engineered Cas9 nucleases with improved specificity[J]. Science, 2016, 351(6268): 84. |
47 | Dowdy SF. Controlling CRISPR-Cas9 gene editing[J]. N Engl J Med, 2019, 381(3): 289. |
48 | Maji B, Gangopadhyay SA, Lee M, et al. A high-throughput platform to identify small-molecule inhibitors of CRISPR-Cas9[J]. Cell, 2019, 177(4): 1067. |
49 | Campbell LA, Coke LM, Richie CT, et al. Gesicle-Mediated delivery of CRISPR/Cas9 ribonucleoprotein complex for inactivating the HIV provirus[J]. Mol Ther, 2019, 27(1): 151. |
50 | Wang X, Li X, Ma Y, et al. Inhibition mechanisms of CRISPR-Cas9 by AcrⅡA17 and AcrⅡA18[J]. Nucleic Acids Res, 2022, 50(1): 512. |
51 | Hou Z, Zhang Y, Propson NE, et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis[J]. Proc Natl Acad Sci U S A, 2013, 110(39): 15644. |
52 | Karvelis T, Gasiunas G, Miksys A, et al. crRNA and tracrRNA guide Cas9-mediated DNA interference inStreptococcusthermophilus[J]. RNA Biol, 2013, 10(5): 841. |
53 | Kim E, Koo T, Park SW, et al.In vivogenome editing with a small Cas9 orthologue derived fromCampylobacter jejuni[J]. Nat Commun, 2017, 8: 14500. |
54 | Søndergaard JN, Geng K, Sommerauer C, et al. Successful delivery of large-size CRISPR/Cas9 vectors in hard-to-transfect human cells using small plasmids[J]. Commun Biol, 2020, 3(1): 319. |
55 | Luther DC, Lee YW, Nagaraj H, et al. Delivery approaches for CRISPR/Cas9 therapeuticsin vivo: advances and challenges[J]. Expert Opin Drug Deliv, 2018, 15(9): 905. |
56 | Liu J, Chang J, Jiang Y, et al. Fast and efficient CRISPR/Cas9 genome editingin vivoenabled by bioreducible lipid and messenger RNA nanoparticles[J]. Adv Mater, 2019, 31(33): e1902575. |
57 | Behr M, Zhou J, Xu B, et al.In vivodelivery of CRISPR-Cas9 therapeutics: progress and challenges[J]. Acta Pharm Sin B, 2021, 11(8): 2150. |
58 | He ZY, Men K, Qin Z, et al. Non-viral and viral delivery systems for CRISPR-Cas9 technology in the biomedical field[J]. Sci China Life Sci, 2017, 60(5): 458. |
59 | Banskota S, Raguram A, Suh S, et al. Engineered virus-like particles for efficientin vivodelivery of therapeutic proteins[J]. Cell, 2022, 185(2): 250. |
60 | Oh SA, Senger K, Madireddi S, et al. High-efficiency nonviral CRISPR/Cas9-mediated gene editing of human T cells using plasmid donor DNA[J]. J Exp Med, 2022, 219(5): e20211530. |
61 | Lin M, Yang Z, Yang Y, et al. CRISPR-based in situ engineering tumor cells to reprogram macrophages for effective cancer immunotherapy[J]. Nano Today, 2022, 42: 101359. |
62 | Qi LY, Wang Y, Hu LF, et al. Enhanced nuclear gene delivery via integrating and streamlining intracellular pathway[J]. J Control Release, 2022, 341: 511. |
63 | Rohiwal SS, Dvorakova N, Klima J, et al. Polyethylenimine based magnetic nanoparticles mediated non-viral CRISPR/Cas9 system for genome editing[J]. Sci Rep, 2020, 10(1): 4619. |
64 | Zhang S, Li X, Lin Q, et al. Synergizing CRISPR/Cas9 off-target predictions for ensemble insights and practical applications[J]. Bioinformatics, 2019, 35(7): 1108. |
65 | Lazzarotto CR, Malinin NL, Li Y, et al. CHANGE-seq reveals genetic and epigenetic effects on CRISPR-Cas9 genome-wide activity[J]. Nat Biotechnol, 2020, 38(11): 1317. |
66 | Xu X, Tao Y, Gao X, et al. A CRISPR-based approach for targeted DNA demethylation[J]. Cell Discov, 2016, 2: 16009. |
67 | Gao Z, Herrera-Carrillo E, Berkhout B. A single H1 promoter can drive both guide RNA and endonuclease expression in the CRISPR-Cas9 system[J]. Mol Ther Nucleic Acids, 2019, 14: 32. |
[1] | 李瑞娟, 孟艳红.超声造影联合O‐RADS在卵巢肿瘤诊断中的研究进展[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(9): 712-715. |
[2] | 张欢欢, 张蕾, 崔洁, 梁尹攀, 伊淑莹.肿瘤免疫中Wnt/β‑catenin信号通路的研究进展[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(9): 716-720. |
[3] | 王伟浩, 马莹, 李胜.循环肿瘤细胞形态诊断参数测量方法的研究进展[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(8): 561-564. |
[4] | 张露, 赵乐乐, 解思凯, 李海鹏, 王俊杰, 李正红.嵌合抗原受体T细胞治疗女性高发恶性肿瘤的研究进展和挑战[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(8): 608-612. |
[5] | 韩明帅, 武英欣, 金讯波.循环肿瘤细胞在前列腺癌中的应用[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(8): 613-617. |
[6] | 李彬, 冯锋, 刘富垒.肿瘤切除手术诱发术后复发的机制及纠正策略研究进展[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(7): 535-540. |
[7] | 褚微, 张冰, 纪洪.HMGCS2在疾病中的研究进展[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(7): 546-551. |
[8] | 司贵米, 山长平.外泌体非编码RNA在三阴性乳腺癌中的研究进展[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(6): 461-465. |
[9] | 彭燕玲, 宋文刚, 刘春燕.PDCD5在消化系统肿瘤中的研究进展[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(4): 300-303. |
[10] | 武英欣, 韩明帅, 张俊勇.3D技术在结直肠肿瘤诊疗中的应用[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(3): 237-240. |
[11] | 刘桐, 王西冉, 孙振, 于成龙, 张明宾.颏下岛状瓣修复口腔恶性肿瘤术后缺损的临床分析[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(1): 53-55. |
[12] | 李秀凤, 刘德美, 韩凯, 李云婷, 张云香.子宫内膜中肾腺癌1例及文献复习[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(1): 56-58. |
[13] | 徐心悦, 景秀丽, 唐华.Ⅱ型固有淋巴细胞的研究进展[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(9): 666-673. |
[14] | 王迪, 吴霜, 王倩, 杨静, 孟英涛.耳穴压豆改善恶性肿瘤伴失眠患者睡眠效果的Meta分析[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(7): 493-500. |
[15] | 刘婵, 李晓梅.STK33在肿瘤中表达的研究进展[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(7): 548-552. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||