betway必威登陆网址 (betway.com )学报››2022,Vol. 43››Issue (9): 666-673.DOI:10.3969/j.issn.2097-0005.2022.09.002
收稿日期:
2022-05-02出版日期:
2022-09-25发布日期:
2022-11-03通讯作者:
唐华作者简介:
徐心悦,硕士研究生,研究方向:细胞免疫,E-mail:910893566@qq.com。基金资助:
Xinyue XU1(), Xiuli JING2, Hua TANG3(
)
Received:
2022-05-02Online:
2022-09-25Published:
2022-11-03Contact:
Hua TANG摘要:
Ⅱ型固有淋巴细胞(type Ⅱ innate lymphoid cells, ILC2s)是一群具有与Ⅱ型辅助性T细胞(type Ⅱ helper T cells, Th2)功能相似、能快速分泌Th2型细胞因子的固有免疫细胞,在2型免疫反应(type 2 immunity)中具有重要作用。ILC2s可接收来自上皮细胞、基质细胞、神经细胞和其他免疫细胞的信号,进而调控下游效应细胞的功能,从而在肺、皮肤等屏障组织发挥重要的效应功能。本文将对ILC2s的分类、发育和主要功能进行概括,对近年来ILC2s的主要研究进展作一综述。
徐心悦, 景秀丽, 唐华. Ⅱ型固有淋巴细胞的研究进展[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(9): 666-673.
Xinyue XU, Xiuli JING, Hua TANG. Research progress of type Ⅱ innate lymphocytes[J]. Journal of Shandong First Medical Unversity & Shandong Academy of Medical Sciences, 2022, 43(9): 666-673.
1 | Orimo K, Tamari M, Saito H, et al. Characteristics of tissue-resident ILCs and their potential as therapeutic targets in mucosal and skin inflammatory diseases[J]. Allergy, 2021, 76(11): 3332. |
2 | Meininger I, Carrasco A, Rao A, et al. Tissue-specific features of innate lymphoid cells[J]. Trends Immunol, 2020, 41(10): 902. |
3 | Vivier E, Artis D, Colonna M, et al. Innate lymphoid cells: 10 years on[J]. Cell, 2018, 174(5): 1054. |
4 | Roan F, Obata-Ninomiya K, Ziegler SF. Epithelial cell-derived cytokines: more than just signaling the alarm[J]. J Clin Invest, 2019, 129(4): 1441. |
5 | Romera-Hernández M, Mathä L, Steer CA, et al. Identification of group 2 innate lymphoid cells in mouse lung, liver, small intestine, bone marrow, and mediastinal and mesenteric lymph nodes[J]. Curr Protoc Immunol, 2019, 125(1): e73. |
6 | Kim DH, Van Dyken SJ. ILC2s in high definition: decoding the logic of tissue-based immunity[J]. Trends Immunol, 2020, 41(1): 7. |
7 | Olguín-Martínez E, Ruiz-Medina BE, Licona-Limón P. Tissue-specific molecular markers and heterogeneity in type 2 innate lymphoid cells[J]. Front Immunol, 2021, 12: 757967. |
8 | Guia S, Narni-Mancinelli E. Helper-like innate lymphoid cells in humans and mice[J]. Trends Immunol, 2020, 41(5): 436. |
9 | Mjösberg JM, Trifari S, Crellin NK, et al. Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161[J]. Nat Immunol, 2011, 12(11): 1055. |
10 | Liu SC, Sirohi K, Verma M, et al. Optimal identification of human conventional and nonconventional (CRTH2-IL7Rα-) ILC2s using additional surface markers[J]. J Allergy Clin Immunol, 2020, 146(2): 390. |
11 | Zhu JF. T helper 2 (Th2) cell differentiation, type 2 innate lymphoid cell (ILC2) development and regulation of interleukin-4 (IL-4) and IL-13 production[J]. Cytokine, 2015, 75(1): 14. |
12 | Kondo M. Lymphoid and myeloid lineage commitment in multipotent hematopoietic progenitors[J]. Immunol Rev, 2010, 238(1): 37. |
13 | Ghaedi M, Steer CA, Martinez-Gonzalez I, et al. Common-lymphoid-progenitor-independent pathways of innate and T lymphocyte development[J]. Cell Rep, 2016, 15(3): 471. |
14 | Harly C, Kenney D, Ren G, et al. The transcription factor TCF-1 enforces commitment to the innate lymphoid cell lineage[J]. Nat Immunol, 2019, 20(9): 1150. |
15 | Yu XF, Wang YH, Deng M, et al. The basic leucine zipper transcription factor NFIL3 directs the development of a common innate lymphoid cell precursor[J]. Elife, 2014, 3: e04406. |
16 | Zhong C, Zheng MZ, Cui KR, et al. Differential expression of the transcription factor GATA3 specifies lineage and functions of innate lymphoid cells[J]. Immunity, 2020, 52(1): 83. |
17 | Yu Y, Tsang JC, Wang C, et al. Single-cell RNA-seq identifies a PD-1hiILC progenitor and defines its development pathway[J]. Nature, 2016, 539(7627): 102. |
18 | Xu W, Cherrier DE, Chea S, et al. An Id2RFP-reporter mouse redefines innate lymphoid cell precursor potentials[J]. Immunity, 2019, 50(4): 1054. |
19 | Liu C, Gong YD, Zhang H, et al. Delineating spatiotemporal and hierarchical development of human fetal innate lymphoid cells[J]. Cell Res, 2021, 31(10): 1106. |
20 | Schneider C, Lee J, Koga S, et al. Tissue-resident group 2 innate lymphoid cells differentiate by layered ontogeny and in situ perinatal priming[J]. Immunity, 2019, 50(6): 1425. |
21 | Koga S, Hozumi K, Hirano KI, et al. Peripheral PDGFRα+gp38+mesenchymal cells support the differentiation of fetal liver-derived ILC2[J]. J Exp Med, 2018, 215(6): 1609. |
22 | Ghaedi M, Shen ZY, Orangi M, et al. Single-cell analysis of RORα tracer mouse lung reveals ILC progenitors and effector ILC2 subsets[J]. J Exp Med, 2020, 217(3): jem.20182293. |
23 | Zeis P, Lian M, Fan XY, et al. In situ maturation and tissue adaptation of type 2 innate lymphoid cell progenitors[J]. Immunity, 2020, 53(4): 775. |
24 | Shin SB, Lo BC, Ghaedi M, et al. Abortive γδTCR rearrangements suggest ILC2s are derived from T-cell precursors[J]. Blood Adv, 2020, 4(21): 5362. |
25 | Ferreira ACF, Szeto ACH, Heycock MWD, et al. RORα is a critical checkpoint for T cell and ILC2 commitment in the embryonic thymus[J]. Nat Immunol, 2021, 22(2): 166. |
26 | Seehus CR, Aliahmad P, De La Torre B, et al. The development of innate lymphoid cells requires TOX-dependent generation of a common innate lymphoid cell progenitor[J]. Nat Immunol, 2015, 16(6): 599. |
27 | Yang Q, Li FY, Harly C, et al. TCF-1 upregulation identifies early innate lymphoid progenitors in the bone marrow[J]. Nat Immunol, 2015, 16(10): 1044. |
28 | Lei AH, Xiao Q, Liu GY, et al. ICAM-1 controls development and function of ILC2[J]. J Exp Med, 2018, 215(8): 2157. |
29 | Zhong C, Zhu JF. Transcriptional regulators dictate innate lymphoid cell fates[J]. Protein Cell, 2017, 8(4): 242. |
30 | Zhong C, Zhu JF. Bcl11b drives the birth of ILC2 innate lymphocytes[J]. J Exp Med, 2015, 212(6): 828. |
31 | Walker JA, Clark PA, Crisp A, et al. Polychromic reporter mice reveal unappreciated innate lymphoid cell progenitor heterogeneity and elusive ILC3 progenitors in bone marrow[J]. Immunity, 2019, 51(1): 104. |
32 | Wang L, Tang J, Yang X, et al. TGF-β induces ST2 and programs ILC2 development[J]. Nat Commun, 2020, 11(1): 35. |
33 | Li Q, Li DL, Zhang X, et al. E3 ligase VHL promotes group 2 innate lymphoid cell maturation and function via glycolysis inhibition and induction of interleukin-33 receptor[J]. Immunity, 2018, 48(2): 258. |
34 | Miller MM, Reinhardt RL. The heterogeneity, origins, and impact of migratory iILC2 cells in anti-helminth immunity[J]. Front Immunol, 2020, 11: 1594. |
35 | Huang YF, Guo LY, Qiu J, et al. IL-25-responsive, lineage-negative KLRG1hicells are multipotential 'inflammatory' type 2 innate lymphoid cells[J]. Nat Immunol, 2015, 16(2): 161. |
36 | Flamar AL, Klose CSN, Moeller JB, et al. Interleukin-33 induces the enzyme tryptophan hydroxylase 1 to promote inflammatory group 2 innate lymphoid cell-mediated immunity[J]. Immunity, 2020, 52(4): 606. |
37 | Miller MM, Patel PS, Bao K, et al. BATF acts as an essential regulator of IL-25-responsive migratory ILC2 cell fate and function[J]. Sci Immunol, 2020, 5(43): eaay3994. |
38 | Ricardo-Gonzalez RR, Schneider C, Liao C, et al. Tissue-specific pathways extrude activated ILC2s to disseminate type 2 immunity[J]. J Exp Med, 2020, 217(4): e20191172. |
39 | Huang YF, Mao KR, Chen X, et al. S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense[J]. Science, 2018, 359(6371): 114. |
40 | Halim TY, Steer CA, Mathä L, et al. Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation[J]. Immunity, 2014, 40(3): 425. |
41 | Monticelli LA, Buck MD, Flamar AL, et al. Arginase 1 is an innate lymphoid-cell-intrinsic metabolic checkpoint controlling type 2 inflammation[J]. Nat Immunol, 2016, 17(6): 656. |
42 | Van Der Ploeg EK, Golebski K, Van Nimwegen M, et al. Steroid-resistant human inflammatory ILC2s are marked by CD45RO and elevated in type 2 respiratory diseases[J]. Sci Immunol, 2021, 6(55): eabd3489. |
43 | Seehus CR, Kadavallore A, Torre B, et al. Alternative activation generates IL-10 producing type 2 innate lymphoid cells[J]. Nat Commun, 2017, 8(1): 1900. |
44 | Miyamoto C, Kojo S, Yamashita M, et al. Runx/Cbfβ complexes protect group 2 innate lymphoid cells from exhausted-like hyporesponsiveness during allergic airway inflammation[J]. Nat Commun, 2019, 10(1): 447. |
45 | Howard E, Lewis G, Galle-Treger L, et al. IL-10 production by ILC2s requires Blimp-1 and cMaf, modulates cellular metabolism, and ameliorates airway hyperreactivity[J]. J Allergy Clin Immunol, 2021, 147(4): 1281. |
46 | Golebski K, Layhadi JA, Sahiner U, et al. Induction of IL-10-producing type 2 innate lymphoid cells by allergen immunotherapy is associated with clinical response[J]. Immunity, 2021, 54(2): 291. |
47 | Hochdörfer T, Winkler C, Pardali K, et al. Expression of c-Kit discriminates between two functionally distinct subsets of human type 2 innate lymphoid cells[J]. Eur J Immunol, 2019, 49(6): 884. |
48 | Scadding GK, Scadding GW. Innate and adaptive immunity: ILC2 and Th2 cells in upper and lower airway allergic diseases[J]. J Allergy Clin Immunol Pract, 2021, 9(5): 1851. |
49 | Gauvreau GM, Sehmi R, Ambrose CS, et al. Thymic stromal lymphopoietin: its role and potential as a therapeutic target in asthma[J]. Expert Opin Ther Targets, 2020, 24(8): 777. |
50 | Borowczyk J, Shutova M, Brembilla NC, et al. IL-25 (IL-17E) in epithelial immunology and pathophysiology[J]. J Allergy Clin Immunol, 2021, 148(1): 40. |
51 | Portelli MA, Hodge E, Sayers I. Genetic risk factors for the development of allergic disease identified by genome-wide association[J]. Clin Exp Allergy, 2015, 45(1): 21. |
52 | Boberg E, Johansson K, Malmhäll C, et al. Interplay between the IL-33/ST2 axis and bone marrow ILC2s in protease allergen-induced IL-5-dependent eosinophilia[J]. Front Immunol, 2020, 11: 1058. |
53 | Xu H, Xu J, Xu L, et al. Interleukin-33 contributes to ILC2 activation and early inflammation-associated lung injury during abdominal sepsis[J]. Immunol Cell Biol, 2018, 96(9): 935. |
54 | Liu GY, Chen YY, Wang Y, et al. Angiotensin II enhances group 2 innate lymphoid cell responses via AT1a during airway inflammation[J]. J Exp Med, 2022, 219(3): e20211001. |
55 | He J, Yang Q, Xiao Q, et al. IRF-7 is a critical regulator of type 2 innate lymphoid cells in allergic airway inflammation[J]. Cell Rep, 2019, 29(9): 2718. |
56 | Helou DG, Shafiei-Jahani P, Hurrell BP, et al. LAIR-1 acts as an immune checkpoint on activated ILC2s and regulates the induction of airway hyperreactivity[J]. J Allergy Clin Immunol, 2022, 149(1): 223. |
57 | Matsushita K, Tanaka H, Yasuda K, et al. Regnase-1 degradation is crucial for IL-33- and IL-25-mediated ILC2 activation[J]. JCI Insight, 2020, 5(4): e131480. |
58 | He J, Jiang GM, Li X, et al. Bilirubin represents a negative regulator of ILC2 in allergic airway inflammation[J]. Mucosal Immunol, 2022, 15(2): 314. |
59 | Xiao Q, Han X, Liu GY, et al. Adenosine restrains ILC2-driven allergic airway inflammation via A2A receptor[J]. Mucosal Immunol, 2022, 15(2): 338. |
60 | Cao YJ, He YM, Wang XY, et al. Polymorphonuclear myeloid-derived suppressor cells attenuate allergic airway inflammation by negatively regulating group 2 innate lymphoid cells[J]. Immunology, 2019, 156(4): 402. |
61 | Maric J, Ravindran A, Mazzurana L, et al. Cytokine-induced endogenous production of prostaglandin D2is essential for human group 2 innate lymphoid cell activation[J]. J Allergy Clin Immunol, 2019, 143(6): 2202. |
62 | Lund SJ, Portillo A, Cavagnero K, et al. Leukotriene C4 potentiates IL-33-Induced group 2 innate lymphoid cell activation and lung inflammation[J]. J Immunol, 2017, 199(3): 1096. |
63 | Von Moltke J, O'Leary CE, Barrett NA, et al. Leukotrienes provide an NFAT-dependent signal that synergizes with IL-33 to activate ILC2s[J]. J Exp Med, 2017, 214(1): 27. |
64 | Cai T, Qiu JX, Ji Y, et al. IL-17-producing ST2+group 2 innate lymphoid cells play a pathogenic role in lung inflammation[J]. J Allergy Clin Immunol, 2019, 143(1): 229. |
65 | Maric J, Ravindran A, Mazzurana L, et al. Prostaglandin E2suppresses human group 2 innate lymphoid cell function[J]. J Allergy Clin Immunol, 2018, 141(5): 1761. |
66 | Zhou WS, Zhang J, Toki S, et al. COX inhibition increasesAlternaria-induced pulmonary group 2 innate lymphoid cell responses and IL-33 release in mice[J]. J Immunol, 2020, 205(4): 1157. |
67 | Choi Y, Kim YM, Lee HR, et al. Eosinophil extracellular traps activate type 2 innate lymphoid cells through stimulating airway epithelium in severe asthma[J]. Allergy, 2020, 75(1): 95. |
68 | Yu QN, Guo YB, Li X, et al. ILC2 frequency and activity are inhibited by glucocorticoid treatment via STAT pathway in patients with asthma[J]. Allergy, 2018, 73(9): 1860. |
69 | Machida K, Aw M, Salter BMA, et al. The role of the TL1A/Dr3 axis in the activation of group 2 innate lymphoid cells in subjects with eosinophilic asthma[J]. Am J Respir Crit Care Med, 2020, 202(8): 1105. |
70 | Chen RC, Smith SG, Salter B, et al. Allergen-induced Increases in sputum levels of group 2 innate lymphoid cells in subjects with asthma[J]. Am J Respir Crit Care Med, 2017, 196(6): 700. |
71 | Christianson CA, Goplen NP, Zafar I, et al. Persistence of asthma requires multiple feedback circuits involving type 2 innate lymphoid cells and IL-33[J]. J Allergy Clin Immunol, 2015, 136(1): 59. |
72 | Winkler C, Hochdörfer T, Israelsson E, et al. Activation of group 2 innate lymphoid cells after allergen challenge in asthmatic patients[J]. J Allergy Clin Immunol, 2019, 144(1): 61. |
73 | Dhariwal J, Cameron A, Wong E, et al. Pulmonary innate lymphoid cell responses during rhinovirus-induced asthma exacerbationsin vivo: a clinical trial[J]. Am J Respir Crit Care Med, 2021, 204(11): 1259. |
74 | Schuijs MJ, Png S, Richard AC, et al. ILC2-driven innate immune checkpoint mechanism antagonizes NK cell antimetastatic function in the lung[J]. Nat Immunol, 2020, 21(9): 998. |
75 | Saranchova I, Han J, Zaman R, et al. Type 2 innate lymphocytes actuate immunity against tumours and limit cancer metastasis[J]. Sci Rep, 2018, 8(1): 2924. |
76 | Kim J, Kim W, Moon UJ, et al. Intratumorally establishing type 2 innate lymphoid cells blocks tumor growth[J]. J Immunol, 2016, 196(5): 2410. |
77 | Jacquelot N, Seillet C, Wang MY, et al. Blockade of the co-inhibitory molecule PD-1 unleashes ILC2-dependent antitumor immunity in melanoma[J]. Nat Immunol, 2021, 22(7): 851. |
78 | Wang S, Qu Y, Xia PY, et al. Transdifferentiation of tumor infiltrating innate lymphoid cells during progression of colorectal cancer[J]. Cell Res, 2020, 30(7): 610. |
79 | Moral JA, Leung J, Rojas LA, et al. ILC2s amplify PD-1 blockade by activating tissue-specific cancer immunity[J]. Nature, 2020, 579(7797): 130. |
80 | Wagner M, Ealey KN, Tetsu H, et al. Tumor-derived lactic acid contributes to the paucity of intratumoral ILC2s[J]. Cell Rep, 2020, 30(8): 2743. |
81 | Qi JJ, Crinier A, Escalière B, et al. Single-cell transcriptomic landscape reveals tumor specific innate lymphoid cells associated with colorectal cancer progression[J]. Cell Rep Med, 2021, 2(8): 100353. |
82 | Galle-Treger L, Hurrell BP, Lewis G, et al. Autophagy is critical for group 2 innate lymphoid cell metabolic homeostasis and effector function[J]. J Allergy Clin Immunol, 2020, 145(2): 502. |
83 | Wilhelm C, Harrison OJ, Schmitt V, et al. Critical role of fatty acid metabolism in ILC2-mediated barrier protection during malnutrition and helminth infection[J]. J Exp Med, 2016, 213(8): 1409. |
84 | Spencer SP, Wilhelm C, Yang Q, et al. Adaptation of innate lymphoid cells to a micronutrient deficiency promotes type 2 barrier immunity[J]. Science, 2014, 343(6169): 432. |
85 | Batyrova B, Luwaert F, Maravelia P, et al. PD-1 expression affects cytokine production by ILC2 and is influenced by peroxisome proliferator-activated receptor-γ[J]. Immun Inflamm Dis, 2020, 8(1): 8. |
86 | Helou DG, Shafiei-Jahani P, Lo R, et al. PD-1 pathway regulates ILC2 metabolism and PD-1 agonist treatment ameliorates airway hyperreactivity[J]. Nat Commun, 2020, 11(1): 3998. |
87 | Karagiannis F, Masouleh SK, Wunderling K, et al. Lipid-droplet formation drives pathogenic group 2 innate lymphoid cells in airway inflammation[J]. Immunity, 2020, 52(5): 885. |
88 | Xiao Q, He J, Lei AH, et al. PPARγ enhances ILC2 function during allergic airway inflammation via transcription regulation of ST2[J]. Mucosal Immunol, 2021, 14(2): 468. |
89 | Fali T, Aychek T, Ferhat M, et al. Metabolic regulation by PPARγ is required for IL-33-mediated activation of ILC2s in lung and adipose tissue[J]. Mucosal Immunol, 2021, 14(3): 585. |
90 | Ercolano G, Gomez-Cadena A, Dumauthioz N, et al. PPARɣ drives IL-33-dependent ILC2 pro-tumoral functions[J]. Nat Commun, 2021, 12(1): 2538. |
91 | Lewis G, Wang BW, Shafiei Jahani P, et al. Dietary fiber-induced microbial short chain fatty acids suppress ILC2-dependent airway inflammation[J]. Front Immunol, 2019, 10: 2051. |
92 | Fu LH, Zhao J, Huang JY, et al. A mitochondrial STAT3-methionine metabolism axis promotes ILC2-driven allergic lung inflammation[J]. J Allergy Clin Immunol, 2022, 149(6): 2091. |
93 | Okamura T, Hashimoto Y, Mori J, et al. ILC2s improve glucose metabolism through the control of saturated fatty acid absorption within visceral fat[J]. Front Immunol, 2021, 12: 669629. |
94 | Wang L, Luo Y, Luo LP, et al. Adiponectin restrains ILC2 activation by AMPK-mediated feedback inhibition of IL-33 signaling[J]. J Exp Med, 2021, 218(2): e20191054. |
[1] | 张芳, 冉丽媛, 张金金, 吴英杰.重组人生长激素对棕榈酸诱导的HepG2细胞脂质沉积的影响[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(9): 641-646. |
[2] | 王森, 张艺馨, 赵玉立, 郭慧敏, 封丽.超声在代谢相关脂肪性肝病及相关疾病诊断中的应用[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(9): 691-695. |
[3] | 李瑞娟, 孟艳红.超声造影联合O‐RADS在卵巢肿瘤诊断中的研究进展[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(9): 712-715. |
[4] | 张欢欢, 张蕾, 崔洁, 梁尹攀, 伊淑莹.肿瘤免疫中Wnt/β‑catenin信号通路的研究进展[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(9): 716-720. |
[5] | 王伟浩, 马莹, 李胜.循环肿瘤细胞形态诊断参数测量方法的研究进展[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(8): 561-564. |
[6] | 张兆凯, 李清照, 李敏, 刘芳菲, 韩明山, 丁迎晓, 刘树永.18F‑FDG PET/CT代谢参数评估肺浸润性腺癌病理亚型及组织学分级的价值[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(8): 592-597. |
[7] | 张露, 赵乐乐, 解思凯, 李海鹏, 王俊杰, 李正红.嵌合抗原受体T细胞治疗女性高发恶性肿瘤的研究进展和挑战[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(8): 608-612. |
[8] | 韩明帅, 武英欣, 金讯波.循环肿瘤细胞在前列腺癌中的应用[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(8): 613-617. |
[9] | 李彬, 冯锋, 刘富垒.肿瘤切除手术诱发术后复发的机制及纠正策略研究进展[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(7): 535-540. |
[10] | 褚微, 张冰, 纪洪.HMGCS2在疾病中的研究进展[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(7): 546-551. |
[11] | 司贵米, 山长平.外泌体非编码RNA在三阴性乳腺癌中的研究进展[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(6): 461-465. |
[12] | 范博皓, 曾源, 黄永胜, 顾刚利, 刘钊, 阎磊.酮体代谢相关基因ACAT1表达对膀胱癌发生发展的影响[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(5): 321-326. |
[13] | 彭燕玲, 宋文刚, 刘春燕.PDCD5在消化系统肿瘤中的研究进展[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(4): 300-303. |
[14] | 武英欣, 韩明帅, 张俊勇.3D技术在结直肠肿瘤诊疗中的应用[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(3): 237-240. |
[15] | 齐莎莎, 吕民英, 付晓梅, 张国伟, 张宏, 张旭亚.支气管哮喘患儿血清中circHIPK3表达水平与气道重塑的相关性[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(2): 101-105. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||