betway必威登陆网址 (betway.com )学报››2022,Vol. 43››Issue (3): 172-177.DOI:10.3969/j.issn.2097-0005.2022.03.003

• 基础研究 •上一篇下一篇

基于网络药理学研究金银花对糖尿病的作用机制

韩明丽1(), 田丹1, 车欣宇1, 余金毅2, 肖昂2, 潘国军2(), 肖娜1()

  1. 1.山东农业大学农学院,山东 泰安  271018
    2.betway必威登陆网址 (betway.com )生命科学学院,山东 泰安  271016
  • 收稿日期:2021-09-10出版日期:2022-03-25发布日期:2022-04-11
  • 通讯作者:潘国军,肖娜
  • 作者简介:韩明丽,本科,研究方向:中药资源与开发,E-mail:1620167050@qq.com
  • 基金资助:
    国家自然科学基金青年基金(82004014);山东省自然科学基金(ZR2019BH080);山东省中医药科技计划(2021Q083)

Mechanism ofLonicerae japonicaeflos in the treatment of diabetes based on netwwork pharmacology

Mingli HAN1(), Dan TIAN1, Xinyu CHE1, Jinyi YU2, Ang XIAO2, Guojun PAN2(), Na XIAO1()

  1. 1.College of Agronomy,Shandong Agricultural University,Taian 271018,China
    2.College of Life Sciences,Shandong First Medical University & Shandong Academy of Medical Sciences,Taian 271016,China
  • Received:2021-09-10Online:2022-03-25Published:2022-04-11
  • Contact:Guojun PAN,Na XIAO

摘要: 目的

基于网络药理学方法阐明金银花治疗糖尿病主要活性成分、作用靶点,揭示其潜在作用机制。

方法

依据中药系统药理学分析平台(Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform,TCMSP)挖掘金银花的活性成分与对应靶点,以药动学参数[生物利用度(oral bioavailability,OB) ≥ 30%、类药性(drug-likeness,DL) ≥ 0.18]为条件进行筛选,运用人类基因-疾病相关的数据库(GeneCards)、OMIM数据库筛选出金银花活性成分的糖尿病靶点;运用Cytoscape 3.8.2绘制“成分-靶点-疾病”网络,借助STRING数据库绘制蛋白互作(protein-protein interaction,PPI)网络图;应用R 4.0.4软件及Bioconductor软件对金银花潜在作用的糖尿病靶点的基因本体(gene ontology,GO)以及京都基因和基因组百科全书(Kyoto Encyclopedia of Genes and Genomes,KEGG)通路进行分析;使用RCSB PDB和TCMSP数据库、Pymol和AutoDockTools 1.5.6 软件对金银花核心化合物和靶点进行分子对接。

结果

从金银花中筛选得到DL及口服吸收较好的16个主要活性成分,预测治疗糖尿病的相关靶点120个,GO功能分析及KEGG通路富集分析显示,金银花治疗糖尿病作用机制主要涉及DNA结合转录因子结合、RNA聚合酶Ⅱ特异性DNA结合转录因子结合等生物过程,并通过脂质与动脉硬化、PI3K-Akt信号通路和TNF信号通路等多条通路共同发挥作用;分子对接结果显示,金银花核心化合物中的木犀草素、槲皮素以及山柰酚对AKT 1具有较高亲和力。

结论

金银花治疗糖尿病是多成分、多靶点、多通路的作用结果,这为金银花治疗糖尿病的进一步研究提供了理论基础。

关键词:金银花,网络药理学,糖尿病,分子对接,作用机制

Abstract: Objective

To elucidate the main active components and targets ofLonicerae japonicaeflos in the treatment of diabetes by network pharmacology, and to reveal the potential mechanism.

Methods

According to TCMSP, the active components and corresponding targets ofLonicerae japonicaeflos were analysis under the conditions of pharmacokinetic parameters [oral bioavailability (OB) ≥ 30%, drug-likeness (DL) ≥ 0.18]. The diabetic targets of active components ofLonicerae japonicaeflos were screened by Gene cards and OMIM database. The “component-target-disease” network was constructed by Cytoscape 3.8.2, and the protein-protein interaction (PPI) network was established by String database. Then, the potential diabetic targets ofLonicerae japonicaeflos analysis of gene ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed by R 4.0.4 language and Bioconductor. RCSB PDB and TMSCP database, Pymol and AutoDockTools-1.5.6 software were used for molecular docking ofLonicerae japonicaeflos core compounds and targets.

Results

A total of 16 main active components were screened fromLonicerae japonicaeflos, and 120 targets were predicted for the treatment of diabetes. Go function analysis and KEGG pathway enrichment analysis showed that the mechanism ofLonicerae japonicaeflos in the treatment of diabetes mainly involves the biological processes such as DNA binding transcription factor binding, RNA polymerase Ⅱ specific DNA binding transcription factor binding, and it plays a role through multiple pathways such as lipid and arteriosclerosis, PI3K-Akt and TNF signaling pathway signaling pathway. Molecular docking results showed that luteolin, quercetin and kaempferol in the core compounds ofLonicerae japonicaeflos had high affinity for AKT1.

Conclusion

The anti-diabetes mechanism by Lonicerae japonicae flos is the result of multi-component, multi-target and multi-channel, which provides a theoretical basis for the further study ofLonicerae japonicaeflos in the treatment of diabetes.

Key words:Lonicerae japonicaeflos,network pharmacology,diabetes,molecular docking,mechanism